skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2009981

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerically computed with high accuracy are periodic travelling waves at the free surface of a two-dimensional, infinitely deep, and constant vorticity flow of an incompressible inviscid fluid, under gravity, without the effects of surface tension. Of particular interest is the angle the fluid surface of an almost extreme wave makes with the horizontal. Numerically found are the following. (i) There is a boundary layer where the angle rises sharply from $$0^\circ$$ at the crest to a local maximum, which converges to $$30.3787\ldots ^\circ$$ , independently of the vorticity, as the amplitude increases towards that of the extreme wave, which displays a corner at the crest with a $$30^\circ$$ angle. (ii) There is an outer region where the angle descends to $$0^\circ$$ at the trough for negative vorticity, while it rises to a maximum, greater than $$30^\circ$$ , and then falls sharply to $$0^\circ$$ at the trough for large positive vorticity. (iii) There is a transition region where the angle oscillates about $$30^\circ$$ , resembling the Gibbs phenomenon. Numerical evidence suggests that the amplitude and frequency of the oscillations become independent of the vorticity as the wave profile approaches the extreme form. 
    more » « less