skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2009989

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phylogenetics has long relied on the use of orthologs, or genes related through speciation events, to infer species relationships. However, identifying orthologs is difficult because gene duplication can obscure relationships among genes. Researchers have been particularly concerned with the insidious effects of pseudoorthologs—duplicated genes that are mistaken for orthologs because they are present in a single copy in each sampled species. Because gene tree topologies of pseudoorthologs may differ from the species tree topology, they have often been invoked as the cause of counterintuitive results in phylogenetics. Despite these perceived problems, no previous work has calculated the probabilities of pseudoortholog topologies or has been able to circumscribe the regions of parameter space in which pseudoorthologs are most likely to occur. Here, we introduce a model for calculating the probabilities and branch lengths of orthologs and pseudoorthologs, including concordant and discordant pseudoortholog topologies, on a rooted three-taxon species tree. We show that the probability of orthologs is high relative to the probability of pseudoorthologs across reasonable regions of parameter space. Furthermore, the probabilities of the two discordant topologies are equal and never exceed that of the concordant topology, generally being much lower. We describe the species tree topologies most prone to generating pseudoorthologs, finding that they are likely to present problems to phylogenetic inference irrespective of the presence of pseudoorthologs. Overall, our results suggest that pseudoorthologs are unlikely to mislead inferences of species relationships under the biological scenarios considered here.[Birth–death model; orthologs; paralogs; phylogenetics.] 
    more » « less
  2. Abstract Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine‐learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages. 
    more » « less
  3. Townsend, Jeffrey (Ed.)
    Abstract Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most phylogenomic studies identify putative single-copy orthologs using clustering approaches and retain families with a single sequence per species. This limits the amount of data available by excluding larger families. Recent advances have suggested several ways to include data from larger families. For instance, tree-based decomposition methods facilitate the extraction of orthologs from large families. Additionally, several methods for species tree inference are robust to the inclusion of paralogs and could use all of the data from larger families. Here, we explore the effects of using all families for phylogenetic inference by examining relationships among 26 primate species in detail and by analyzing five additional data sets. We compare single-copy families, orthologs extracted using tree-based decomposition approaches, and all families with all data. We explore several species tree inference methods, finding that identical trees are returned across nearly all subsets of the data and methods for primates. The relationships among Platyrrhini remain contentious; however, the species tree inference method matters more than the subset of data used. Using data from larger gene families drastically increases the number of genes available and leads to consistent estimates of branch lengths, nodal certainty and concordance, and inferences of introgression in primates. For the other data sets, topological inferences are consistent whether single-copy families or orthologs extracted using decomposition approaches are analyzed. Using larger gene families is a promising approach to include more data in phylogenomics without sacrificing accuracy, at least when high-quality genomes are available. 
    more » « less