Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Collisionless low-Mach-number shocks are abundant in astrophysical and space plasma environments, exhibiting complex wave activity and wave–particle interactions. In this paper, we present 2D Particle-in-Cell (PIC) simulations of quasi-perpendicular nonrelativistic (vsh≈ (5500–22000) km s−1) low-Mach-number shocks, with a specific focus on studying electrostatic waves in the shock ramp and precursor regions. In these shocks, an ion-scale oblique whistler wave creates a configuration with two hot counterstreaming electron beams, which drive unstable electron acoustic waves (EAWs) that can turn into electrostatic solitary waves (ESWs) at the late stage of their evolution. By conducting simulations with periodic boundaries, we show that the EAW properties agree with linear dispersion analysis. The characteristics of ESWs in shock simulations, including their wavelength and amplitude, depend on the shock velocity. When extrapolated to shocks with realistic velocities (vsh≈ 300 km s−1), the ESW wavelength is reduced to one-tenth of the electron skin depth and the ESW amplitude is anticipated to surpass that of the quasi-static electric field by more than a factor of 100. These theoretical predictions may explain a discrepancy, between PIC and satellite measurements, in the relative amplitude of high- and low-frequency electric field fluctuations.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Abstract Electron cyclotron waves (whistlers) are commonly observed in plasmas near Earth and the solar wind. In the presence of nonlinear mirror modes, bursts of whistlers, usually called lion roars, have been observed within low magnetic field regions associated with these modes. In the intracluster medium (ICM) of galaxy clusters, the excitation of the mirror instability is expected, but it is not yet clear whether electron and ion cyclotron (IC) waves can also be present under conditions where gas pressure dominates over magnetic pressure (highβ). In this work, we perform fully kinetic particle-in-cell simulations of a plasma subject to a continuous amplification of the mean magnetic fieldB(t) to study the nonlinear stages of the mirror instability and the ensuing excitation of whistler and IC waves under ICM conditions. Once mirror modes reach nonlinear amplitudes, both whistler and IC waves start to emerge simultaneously, with subdominant amplitudes, propagating in low-Bregions, quasi-parallel toB(t). We show that the underlying source of excitation is the pressure anisotropy of electrons and ions trapped in mirror modes with loss-cone-type distributions. We also observe that IC waves play an essential role in regulating the ion pressure anisotropy at nonlinear stages. We argue that whistler and IC waves are a concomitant feature at late stages of the mirror instability even at highβ, and therefore, expected to be present in astrophysical environments like the ICM. We discuss the implications of our results for collisionless heating and dissipation of turbulence in the ICM.more » « less
-
Abstract General relativistic magnetohydrodynamic (GRMHD) simulations of black hole tilted disks—where the angular momentum of the accretion flow at large distances is misaligned with respect to the black hole spin—commonly display standing shocks within a few to tens of gravitational radii from the black hole. In GRMHD simulations of geometrically thick, optically thin accretion flows, applicable to low-luminosity sources like Sgr A* and M87*, the shocks have transrelativistic speed, moderate plasma beta (the ratio of ion thermal pressure to magnetic pressure isβpi1∼ 1–8), and low sonic Mach number (the ratio of shock speed to sound speed isMs∼ 1–6). We study such shocks with 2D particle-in-cell simulations, and we quantify the efficiency and mechanisms of electron heating for the special case of preshock magnetic fields perpendicular to the shock direction of propagation. We find that the postshock electron temperatureTe2exceeds the adiabatic expectationTe2,adby an amount , nearly independent of the plasma beta and of the preshock electron-to-ion temperature ratioTe1/Ti1, which we vary from 0.1 to unity. We investigate the heating physics forMs∼ 5–6 and find that electron superadiabatic heating is governed by magnetic pumping atTe1/Ti1= 1, whereas heating byB-parallel electric fields (i.e., parallel to the local magnetic field) dominates atTe1/Ti1= 0.1. Our results provide physically motivated subgrid prescriptions for electron heating at the collisionless shocks seen in GRMHD simulations of black hole accretion flows.more » « less
-
Abstract Turbulence driven by active galactic nuclei activity, cluster mergers, and galaxy motion constitutes an attractive energy source for heating the intracluster medium (ICM). How this energy dissipates into the ICM plasma remains unclear, given its low collisionality and high magnetization (precluding viscous heating by Coulomb processes). Kunz et al. proposed a viable heating mechanism based on the anisotropy of the plasma pressure under ICM conditions. The present paper builds upon that work and shows that particles can be heated by large-scale turbulent fluctuations via magnetic pumping. We study how the anisotropy evolves under a range of forcing frequencies, what waves and instabilities are generated, and demonstrate that the particle distribution function acquires a high-energy tail. For this, we perform particle-in-cell simulations where we periodically vary the mean magnetic fieldB(t). WhenB(t) grows (dwindles), a pressure anisotropyP⊥>P∥(P⊥<P∥) builds up (P⊥andP∥are, respectively, the pressures perpendicular and parallel toB(t)). These pressure anisotropies excite mirror (P⊥>P∥) and oblique firehose (P∥>P⊥) instabilities, which trap and scatter the particles, limiting the anisotropy, and providing a channel to heat the plasma. The efficiency of this mechanism depends on the frequency of the large-scale turbulent fluctuations and the efficiency of the scattering the instabilities provide in their nonlinear stage. We provide a simplified analytical heating model that captures the phenomenology involved. Our results show that this process can be relevant in dissipating and distributing turbulent energy at kinetic scales in the ICM.more » « less
-
Abstract In galaxy clusters, the intracluster medium (ICM) is expected to host a diffuse, long-lived, and invisible population of “fossil” cosmic-ray electrons (CRe) with 1–100 MeV energies. These CRe, if reaccelerated by 100× in energy, can contribute synchrotron luminosity to cluster radio halos, relics, and phoenices. Reacceleration may be aided by CRe scattering upon the ion-Larmor-scale waves that spawn when ICM is compressed, dilated, or sheared. We study CRe scattering and energy gain due to ion cyclotron (IC) waves generated by continuously driven compression in 1D fully kinetic particle-in-cell simulations. We find that pitch-angle scattering of CRe by IC waves induces energy gain via magnetic pumping. In an optimal range of IC-resonant momenta, CRe may gain up to ∼10%–30% of their initial energy in one compression/dilation cycle with magnetic field amplification ∼3–6×, assuming adiabatic decompression without further scattering and averaging over initial pitch angle.more » « less