skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron Reacceleration via Ion Cyclotron Waves in the Intracluster Medium
Abstract In galaxy clusters, the intracluster medium (ICM) is expected to host a diffuse, long-lived, and invisible population of “fossil” cosmic-ray electrons (CRe) with 1–100 MeV energies. These CRe, if reaccelerated by 100× in energy, can contribute synchrotron luminosity to cluster radio halos, relics, and phoenices. Reacceleration may be aided by CRe scattering upon the ion-Larmor-scale waves that spawn when ICM is compressed, dilated, or sheared. We study CRe scattering and energy gain due to ion cyclotron (IC) waves generated by continuously driven compression in 1D fully kinetic particle-in-cell simulations. We find that pitch-angle scattering of CRe by IC waves induces energy gain via magnetic pumping. In an optimal range of IC-resonant momenta, CRe may gain up to ∼10%–30% of their initial energy in one compression/dilation cycle with magnetic field amplification ∼3–6×, assuming adiabatic decompression without further scattering and averaging over initial pitch angle.  more » « less
Award ID(s):
2010189
PAR ID:
10437979
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Whether or not coherent magnetospheric whistler waves play important roles in the pitch‐angle scattering of energetic particles is a crucial question in magnetospheric physics. The interaction of a thermal distribution of energetic particles with coherent whistler waves is thus investigated. The distribution is prescribed by the Maxwell‐Jüttner distribution, which is a relativistic generalization of the Maxwell‐Boltzmann distribution. Coherent whistler waves are modeled by circularly polarized waves propagating parallel to the background magnetic field. It is shown that for parameters relevant to magnetospheric chorus, a significant fraction (1–5%) of the energetic particle population undergoes drastic, nondiffusive pitch‐angle scattering by coherent chorus. The scaling of this fraction with the wave amplitude may also explain the association of relativistic microbursts to large‐amplitude chorus. A much improved condition for large pitch‐angle scattering is presented that is related to, but may or may not include the exact resonance condition depending on the particle's initial conditions. The theory reveals a critical mechanism not contained in the widely used second‐order trapping theory. 
    more » « less
  2. Abstract Electron cyclotron waves (whistlers) are commonly observed in plasmas near Earth and the solar wind. In the presence of nonlinear mirror modes, bursts of whistlers, usually called lion roars, have been observed within low magnetic field regions associated with these modes. In the intracluster medium (ICM) of galaxy clusters, the excitation of the mirror instability is expected, but it is not yet clear whether electron and ion cyclotron (IC) waves can also be present under conditions where gas pressure dominates over magnetic pressure (highβ). In this work, we perform fully kinetic particle-in-cell simulations of a plasma subject to a continuous amplification of the mean magnetic fieldB(t) to study the nonlinear stages of the mirror instability and the ensuing excitation of whistler and IC waves under ICM conditions. Once mirror modes reach nonlinear amplitudes, both whistler and IC waves start to emerge simultaneously, with subdominant amplitudes, propagating in low-Bregions, quasi-parallel toB(t). We show that the underlying source of excitation is the pressure anisotropy of electrons and ions trapped in mirror modes with loss-cone-type distributions. We also observe that IC waves play an essential role in regulating the ion pressure anisotropy at nonlinear stages. We argue that whistler and IC waves are a concomitant feature at late stages of the mirror instability even at highβ, and therefore, expected to be present in astrophysical environments like the ICM. We discuss the implications of our results for collisionless heating and dissipation of turbulence in the ICM. 
    more » « less
  3. The Magnetospheric Multi-scale Mission has frequently observed periodic bursts of counterstreaming electrons with energies ranging from ≈ 30 to 500 keV at the Earth's magnetospheric boundary layers, termed “microinjections.” Recently, a source region for microinjections was discovered at the high-latitude magnetosphere where microinjections showed up simultaneously at all energy channels and were organized by magnetic field variation associated with ultra low frequency mirror mode waves (MMWs) with ≈ 5 min periodicity. These MMWs were associated with strong higher frequency electromagnetic wave activity. Here, we have identified some of these waves as electromagnetic ion cyclotron (EMIC) waves. EMIC waves and parallel electric fields often lead to the radiation belt electron losses due to pitch-angle scattering. We show that, for the present event, the EMIC waves are not responsible for scattering electrons into a loss cone, and thus, they are unlikely to be responsible for the observed microinjection signature. We also find that the parallel electric field potentials within the waves are not adequate to explain the observed electrons with >90 keV energies. While whistler waves may contribute to the electron scattering and may exist during this event, there was no burst mode data available to verify this. 
    more » « less
  4. Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes. 
    more » « less
  5. Abstract The stability of a realistic multicomponent pickup ion (PUI) velocity distribution derived from a global model of neutral atoms in the heliosphere, which treats hydrogen and helium atoms self-consistently and includes equations for electrons and helium ions, is investigated using linear instability analysis and hybrid simulations. Linear instability analysis shows that the excited oblique mirror waves and the parallel/quasi-parallel Alfvén-cyclotron (AC) waves have lower growth rates than those obtained previously by A. Mousavi et al. for the PUI velocity distributions given by J. Heerikhuisen et al. The PUI scattering by each of the two modes alone is studied. In contrast to the previous investigations, our current simulations using the updated realistic distributions indicate that mirror waves alone do not effectively scatter PUIs in pitch angle. Instead, they primarily contribute to reducing the thermal spread anisotropy of the PUIs originating from the neutral solar wind. The unstable AC waves exhibit lower growth rates but higher saturation levels than the mirror waves. Two-dimensional (2D) simulation results show that when all unstable waves are present, the predominant contributor to the fluctuating magnetic field energy is the AC mode. The AC waves quickly scatter the PUIs with pitch angles away from 90toward isotropy, while the PUIs near 90pitch angle maintain a degree of anisotropy within our simulation timeframe. Moreover, several 1D and 2D hybrid simulations with different numbers of particles per cell are performed to examine the impact of numerical noise on PUI scattering. Finally, the implications of these results for the Interstellar Boundary Explorer energetic neutral atom ribbon are discussed. 
    more » « less