skip to main content


Search for: All records

Award ID contains: 2010511

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g., for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. To accelerate electrons to multi-GeV energies with lasers, keep the bright light tight. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. The effect of realistic atmospheric conditions on mid-IR (λ = 3.9 µm) and long-wave-IR (λ = 10 µm) laser-induced avalanche breakdown for the remote detection of radioactive material is examined experimentally and with propagation simulations. Our short-range in-lab mid-IR laser experiments show a correlation between increasing turbulence level and a reduced number of breakdown sites associated with a reduction in the portion of the focal volume above the breakdown threshold. Simulations of propagation through turbulence are in excellent agreement with these measurements and provide code validation. We then simulate propagation through realistic atmospheric turbulence over a long range (0.1–1 km) in the long-wave-IR regime (λ = 10 µm). The avalanche threshold focal volume is found to be robust even in the presence of strong turbulence, only dropping by ∼50% over a propagation length of ∼0.6 km. We also experimentally assess the impact of aerosols on avalanche-based detection, finding that, while background counts increase, a useful signal is extractable even at aerosol concentrations 105times greater than what is typically observed in atmospheric conditions. Our results show promise for the long-range detection of radioactive sources under realistic atmospheric conditions.

     
    more » « less
  4. David L. Andrews ; Enrique J. Galvez ; Halina Rubinsztein-Dunlop (Ed.)
    We review highlights of our recent contributions to understanding the propagation dynamics and transverse orbital angular momentum of optical pulses carrying spatiotemporal optical vortices (STOVs). STOVs, which were first observed as an emergent phenomenon in nonlinear self-focusing, were first linearly generated using a 4𝑓 pulse shaper and measured using transient-grating single-shot supercontinuum spectral interferometry (TG-SSSI). That STOV-based transverse orbital angular momentum (OAM) is carried at the single photon level was then confirmed in measurements of OAM conservation in second harmonic generation. Our recent theory for the electromagnetic mode structure and transverse OAM of STOVcarrying pulses in dispersive media predicts half-integer OAM and the existence of a transverse OAM-carrying quasiparticle: the bulk medium STOV polariton. 
    more » « less
  5. We present results from two new techniques for the generation of meter-scale, low density (∼1017 cm−3 on axis) plasma waveguides, the “two-Bessel” technique, and the “self-waveguiding” technique. Plasma waveguides of this density and length range are needed for demonstration of a ∼10 GeV laser wakefield accelerator module, key for future staging for a ∼TeV lepton collider. Both techniques require the use of high quality ultrashort pulse Bessel beams to efficiently and uniformly ionize hydrogen gas in meter-scale supersonic gas jets via optical field ionization. We review these two techniques, describe our meter-scale gas jets, and present a new method for correction of optical aberrations in Bessel beams. Finally, we briefly present results from recent experiments employing one of our techniques, demonstrating quasi-monoenergetic acceleration of ∼5 GeV electron bunches in 20 cm long, low density plasma waveguides. 
    more » « less
  6. null (Ed.)
  7. A spatiotemporal optical vortex (STOV) is an intrinsic optical orbital angular momentum (OAM) structure in which the OAM vector is orthogonal to the propagation direction [Optica6,1547(2019)OPTIC82334-253610.1364/OPTICA.6.001547] and the optical phase circulates in space-time. Here, we experimentally and theoretically demonstrate the generation of the second harmonic of a STOV-carrying pulse along with the conservation of STOV-based OAM. Our experiments verify that photons can have intrinsic orbital angular momentum perpendicular to their propagation direction.

     
    more » « less
  8. null (Ed.)