Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tachyons are hypothetical particles with imaginary mass that travel faster than light. However, methods to experimentally verify whether tachyons exist are lacking. Here, we propose a novel scheme to create analogue tachyons using a transmission line composed of superconducting nonlinear asymmetric inductive elements and to detect them by controlling the wavenumber in order to extend their lifetime. In particular, we numerically demonstrate the exotic property of tachyons where their velocity increases with decreasing energy. Our proposal offers a promising approach to understandingtachyon condensation, which is crucial for elucidating the origins of the Universe, in a realizable laboratory system.more » « less
-
Abstract We investigate the dynamics of two quantum mechanical oscillator system–bath toy models obtained by truncating to zero spatial dimensions linearized gravity coupled to a massive scalar field and scalar quantum electrodynamics (QED). The scalar-gravity toy model maps onto the phase damped oscillator, while the scalar QED toy model approximately maps onto an oscillator system subject to two-photon damping. The toy models provide potentially useful insights into solving for open system quantum dynamics relevant to the full scalar QED and weak gravitational field systems, in particular operational probes of the decoherence for initial scalar field system superposition states.more » « less
-
Abstract An accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental verification of this quantum vacuum effect. In this work, we consider many accelerating photodetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.more » « less
-
In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a quantum ruler is composed of harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the superposition of positions, and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system.more » « lessFree, publicly-accessible full text available May 6, 2025
-
Recent work has shown that it may be possible to detect gravitationally induced entanglement in tabletop experiments in the not-too-distant future. However, there are at present no thoroughly developed models for this type of experiment where the entangled particles are treated more fundamentally as excitations of a relativistic quantum field, and with the measurements modeled using expectation values of field observables. Here we propose a thought experiment where two particles are initially prepared in a superposition of coherent states within a common three-dimensional (3D) harmonic trap. The particles then develop entanglement through their mutual gravitational interaction, which can be probed through particle position detection probabilities. The present work gives a nonrelativistic quantum mechanical analysis of the gravitationally induced entanglement of this system, which we term the “gravitational harmonium” due to its similarity to the harmonium model of approximate electron interactions in a helium atom; the entanglement is operationally determined through the matter wave interference visibility. The present work serves as the basis for a subsequent investigation, which models this system using quantum field theory, providing further insights into the quantum nature of gravitationally induced entanglement through relativistic corrections, together with an operational procedure to quantify the entanglement.more » « less