We investigate the particle–antiparticle symmetry of the gravitationally coupled Dirac equation, both on the basis of the gravitational central-field problem and in general curved space–time backgrounds. First, we investigate the central-field problem with the help of a Foldy–Wouthuysen transformation. This disentangles the particle from the antiparticle solutions, and leads to a “matching relation” of the inertial and the gravitational mass, which is valid for both particles as well as antiparticles. Second, we supplement this derivation by a general investigation of the behavior of the gravitationally coupled Dirac equation under the discrete symmetry of charge conjugation, which is tantamount to a particle[Formula: see text]antiparticle transformation. Limitations of the Einstein equivalence principle due to quantum fluctuations are discussed. In quantum mechanics, the question of where and when in the Universe an experiment is being performed can only be answered up to the limitations implied by Heisenberg’s Uncertainty Principle, questioning an assumption made in the original formulation of the Einstein equivalence principle. Furthermore, at some level of accuracy, it becomes impossible to separate nongravitational from gravitational experiments, leading to further limitations.
more »
« less
Gravitationally induced entanglement in a harmonic trap
Recent work has shown that it may be possible to detect gravitationally induced entanglement in tabletop experiments in the not-too-distant future. However, there are at present no thoroughly developed models for this type of experiment where the entangled particles are treated more fundamentally as excitations of a relativistic quantum field, and with the measurements modeled using expectation values of field observables. Here we propose a thought experiment where two particles are initially prepared in a superposition of coherent states within a common three-dimensional (3D) harmonic trap. The particles then develop entanglement through their mutual gravitational interaction, which can be probed through particle position detection probabilities. The present work gives a nonrelativistic quantum mechanical analysis of the gravitationally induced entanglement of this system, which we term the “gravitational harmonium” due to its similarity to the harmonium model of approximate electron interactions in a helium atom; the entanglement is operationally determined through the matter wave interference visibility. The present work serves as the basis for a subsequent investigation, which models this system using quantum field theory, providing further insights into the quantum nature of gravitationally induced entanglement through relativistic corrections, together with an operational procedure to quantify the entanglement.
more »
« less
- Award ID(s):
- 2011382
- PAR ID:
- 10535931
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 107
- Issue:
- 10
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Probing quantum entanglement with macroscopic objects allows us to test quantum mechanics in new regimes. One way to realize such behavior is to couple a macroscopic mechanical oscillator to a continuous light field via radiation pressure. In view of this, the system that is discussed comprises an optomechanical cavity driven by a coherent optical field in the unresolved sideband regime where we assume Gaussian states and dynamics. We develop a framework to quantify the amount of entanglement in the system numerically. Different from previous work, we treat non-Markovian noise and take into account both the continuous optical field and the cavity mode. We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory and discuss the parameter regimes where entanglement exists, even in the presence of quantum and classical noises.more » « less
-
When a massive quantum body is put into a spatial superposition, it is of interest to consider the quantum aspects of the gravitational field sourced by the body. We argue that in order to understand how the body may become entangled with other massive bodies via gravitational interactions, it must be thought of as being entangled with its own Newtonian-like gravitational field. Thus, a Newtonian-like gravitational field must be capable of carrying quantum information. Our analysis supports the view that table-top experiments testing entanglement of systems interacting via gravity do probe the quantum nature of gravity, even if no “gravitons” are emitted during the experiment.more » « less
-
To test the quantum nature of gravity in a laboratory requires witnessing the entanglement between the two test masses (nanocrystals) solely due to the gravitational interaction kept at a distance in a spatial superposition. The protocol is known as the quantum-gravity-induced entanglement of masses (QGEM). One of the main backgrounds in the QGEM experiment is electromagnetic (EM) -induced entanglement and decoherence. The EM interactions can entangle the two neutral masses via dipole-dipole vacuum-induced interactions, such as the Casimir-Polder interaction. To mitigate the EM-induced interactions between the two nanocrystals, we enclose the two interferometers in a Faraday cage and separate them by a conducting plate. However, any imperfection on the surface of a nanocrystal, such as a permanent dipole moment, will also create an EM background interacting with the conducting plate in the experimental box. These interactions will further generate EM-induced dephasing, which we wish to mitigate. In this paper, we will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate and run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition in a model-independent way of creating the spatial superposition.more » « less
-
Cosmological gravitational particle production (CGPP) is the creation of particles in an expanding universe due solely to their gravitational interaction. These particles can play an important role in the cosmic history through their connection to various cosmological relics including dark matter, gravitational-wave radiation, dark radiation, and the baryon asymmetry. This review explains the phenomenon of CGPP as a consequence of quantum fields in a time-dependent background, catalogs known results for the spectra and cosmological abundance of gravitationally produced particles of various spins, and explores the phenomenological consequences and observational signatures of CGPP.more » « less