skip to main content

Search for: All records

Award ID contains: 2011519

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. We develop an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first time includes inflow boundary conditions. The algorithm also allows for both of the rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces for sufficiently small data. We demonstrate computationally that this algorithm can be successfully discretized and that it can converge to solutions for the model parameters of order one. We include in the appendix a description of appropriate boundary conditions for the auxiliary variable in standard geometries.
    Free, publicly-accessible full text available May 1, 2023