skip to main content


Title: An algorithm for the grade-two rheological model
We develop an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first time includes inflow boundary conditions. The algorithm also allows for both of the rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces for sufficiently small data. We demonstrate computationally that this algorithm can be successfully discretized and that it can converge to solutions for the model parameters of order one. We include in the appendix a description of appropriate boundary conditions for the auxiliary variable in standard geometries.  more » « less
Award ID(s):
2011519
NSF-PAR ID:
10343111
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
56
Issue:
3
ISSN:
2822-7840
Page Range / eLocation ID:
1007 to 1025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we investigate the poroelastic waves by solving the time‐domain Biot‐JKD equation with an efficient numerical method. The viscous dissipation occurring in the pores depends on the square root of the frequency and is described by the Johnson‐Koplik‐Dashen (JKD) dynamic tortuosity/permeability model. The temporal convolutions of order 1/2 shifted fractional derivatives are involved in the time‐domain Biot‐JKD model, causing the problem to be stiff and challenging to be implemented numerically. Based on the best relative Chebyshev approximation of the square‐root function, we design an efficient algorithm to approximate and localize the convolution kernel by introducing a finite number of auxiliary variables that satisfy a local system of ordinary differential equations. The imperfect hydraulic contact condition is used to describe the interface boundary conditions and the Runge‐Kutta discontinuous Galerkin (RKDG) method together with the splitting method is applied to compute the numerical solutions. Several numerical examples are presented to show the accuracy and efficiency of our approach.

     
    more » « less
  2. It has recently been shown that the evolution of a linear Partial Differential Equation (PDE) can be more conveniently represented in terms of the evolution of a higher spatial derivative of the state. This higher spatial derivative (termed the `fundamental state') lies in $L_2$ - requiring no auxiliary boundary conditions or continuity constraints. Such a representation (termed a Partial Integral Equation or PIE) is then defined in terms of an algebra of bounded integral operators (termed Partial Integral (PI) operators) and is constructed by identifying a unitary map from the fundamental state to the state of the original PDE. Unfortunately, when the PDE is nonlinear, the dynamics of the associated fundamental state are no longer parameterized in terms of PI operators. However, in this paper we show that such dynamics can be compactly represented using a new tensor algebra of partial integral operators acting on the tensor product of the fundamental state. We further show that this tensor product of the fundamental state forms a natural distributed equivalent of the monomial basis used in representation of polynomials on a finite-dimensional space. This new representation is then used to provide a simple SDP-based Lyapunov test of stability of quadratic PDEs. The test is applied to three illustrative examples of quadratic PDEs. 
    more » « less
  3. ABSTRACT At low surface superheat levels, water droplets deposited on ZnO nanostructured surfaces vaporize primarily by conduction transport of heat from the solid heated surface to the liquid-vapor interface. As the superheat is increased beyond the onset of bub- ble nucleation threshold (ONB), an increasing number of active nucleation sites are observed within the evaporating droplet re- ducing the time required to completely evaporate the droplet. There were two primary objectives of this investigation; first, to determine how system parameters dictate when ONB occurs and how its heat transfer enhancement effect increases with superheat. The second was to develop a physics-inspired model equation for the evaporation time of a droplet on a nanostructured surface which accounts for effects of conduction transport in the liquid layer of the droplet and nucleate boiling. A shape factor model for conduction-dominated vaporiza- tion of the droplet was first constructed. A correction factor was introduced to account for deviation of the measured droplet evaporation times from the conduction-dominated model. The correction factor form was postulated using a modified form of the onset of nucleate boiling parameter used in the well-known model analysis developed by Hsu to predict onset of nucleation and active nucleation site range in a thermal boundary layer as- sociated with forced convection boiling. Droplet footprint radii were experimentally observed to be affected by superheat and an additional term was introduced to account for this phenomenon. A term was also introduced to include correlations for boiling to incorporate system properties. This modeling led to an evaporation time equation contain- ing numerical constants dictated by the idealizations from the physical modeling. To develop an improved empirical model equation, these numerical values were taken to be adjustable constants, and a genetic algorithm was used to determine the ad- justable constant values that best fit a data collection spanning wide variations of droplet size, surface apparent contact angle, and superheat level. The best-fit constants match the data to an absolute fractional error of 26%. The model equation developed in this study provides insight into the interaction between con- duction transport and nucleate boiling effects that can arise in droplet vaporization processes. 
    more » « less
  4. There has been a growing interest in incorporating auxiliary summary information from external studies into the analysis of internal individual‐level data. In this paper, we propose an adaptive estimation procedure for an additive risk model to integrate auxiliary subgroup survival information via a penalized method of moments technique. Our approach can accommodate information from heterogeneous data. Parameters to quantify the magnitude of potential incomparability between internal data and external auxiliary information are introduced in our framework while nonzero components of these parameters suggest a violation of the homogeneity assumption. We further develop an efficient computational algorithm to solve the numerical optimization problem by profiling out the nuisance parameters. In an asymptotic sense, our method can be as efficient as if all the incomparable auxiliary information is accurately acknowledged and has been automatically excluded from consideration. The asymptotic normality of the proposed estimator of the regression coefficients is established, with an explicit formula for the asymptotic variance‐covariance matrix that can be consistently estimated from the data. Simulation studies show that the proposed method yields a substantial gain in statistical efficiency over the conventional method using the internal data only, and reduces estimation biases when the given auxiliary survival information is incomparable. We illustrate the proposed method with a lung cancer survival study.

     
    more » « less
  5. Summary

    The inferential model (IM) framework provides valid prior-free probabilistic inference by focusing on predicting unobserved auxiliary variables. But, efficient IM-based inference can be challenging when the auxiliary variable is of higher dimension than the parameter. Here we show that features of the auxiliary variable are often fully observed and, in such cases, a simultaneous dimension reduction and information aggregation can be achieved by conditioning. This proposed conditioning strategy leads to efficient IM inference and casts new light on Fisher's notions of sufficiency, conditioning and also Bayesian inference. A differential-equation-driven selection of a conditional association is developed, and validity of the conditional IM is proved under some conditions. For problems that do not admit a conditional IM of the standard form, we propose a more flexible class of conditional IMs based on localization. Examples of local conditional IMs in a bivariate normal model and a normal variance components model are also given.

     
    more » « less