Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available December 1, 2024
-
The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts.
-
Multi-label image recognition has been an indispensable fundamental component for many real computer vision applications. However, a severe threat of privacy leakage in multi-label image recognition has been overlooked by existing studies. To fill this gap, two privacy-preserving models, Privacy-Preserving Multi-label Graph Convolutional Networks (P2-ML-GCN) and Robust P2-ML-GCN (RP2-ML-GCN), are developed in this article, where differential privacy mechanism is implemented on the model’s outputs so as to defend black-box attack and avoid large aggregated noise simultaneously. In particular, a regularization term is exploited in the loss function of RP2-ML-GCN to increase the model prediction accuracy and robustness. After that, a proper differential privacy mechanism is designed with the intention of decreasing the bias of loss function in P2-ML-GCN and increasing prediction accuracy. Besides, we analyze that a bounded global sensitivity can mitigate excessive noise’s side effect and obtain a performance improvement for multi-label image recognition in our models. Theoretical proof shows that our two models can guarantee differential privacy for model’s outputs, weights and input features while preserving model robustness. Finally, comprehensive experiments are conducted to validate the advantages of our proposed models, including the implementation of differential privacy on model’s outputs, the incorporation of regularization term into loss function, and the adoption of bounded global sensitivity for multi-label image recognition.more » « less