skip to main content

Search for: All records

Award ID contains: 2011890

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a precise measurement of the asymptotic normalization coefficient (ANC) for the16O ground state (GS) through the12C(11B,7Li)16O transfer reaction using the Quadrupole‐3‐Dipole (Q3D) magnetic spectrograph. The present work sheds light on the existing discrepancy of more than 2 orders of magnitude between the previously reported GS ANC values. This ANC is believed to have a strong effect on the12C(α,γ)16O reaction rate by constraining the external capture to the16O ground state, which can interfere with the high-energy tail of the 2+subthreshold state. Based on the new ANC, we determine the astrophysicalS-factor and the stellar rate of the12C(α,γ)16O reaction. An increase of up to 21% in the total reaction rate is found within the temperature range of astrophysical relevance compared with the previous recommendation of a recent review. Finally, we evaluate the impact of our new rate on the pair-instability mass gap for black holes (BH) by evolving massive helium core stars using the MESA stellar evolution code. The updated12C(α,γ)16O reaction rate decreases the lower and upper edges of the BH gap about 12% and 5%, respectively.

  2. Abstract

    Nuclear reactions heat and cool the crust of accreting neutron stars and need to be understood to interpret observations of X-ray bursts and long-term cooling in transiently accreting systems. It was recently suggested that previously ignored neutron transfer reactions may play a significant role in the nuclear processes. We present results from full nuclear network calculations that now include these reactions and determine their impact on crust composition, crust impurity, heating, and cooling. We find that a large number of neutron transfer reactions indeed occur and impact crust models. In particular, we identify a new type of reaction cycle that brings a pair of nuclei across the nuclear chart into equilibrium via alternating neutron capture and neutron release, interspersed with a neutron transfer. While neutron transfer reactions lead to changes in crust model predictions and need to be considered in future studies, previous conclusions concerning heating, cooling, and compositional evolution are remarkably robust.

  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available August 1, 2024
  6. Free, publicly-accessible full text available August 1, 2024
  7. Free, publicly-accessible full text available July 1, 2024
  8. Free, publicly-accessible full text available June 1, 2024
  9. Free, publicly-accessible full text available June 1, 2024
  10. Free, publicly-accessible full text available June 1, 2024