Three sudden spin-down events, termed ‘antiglitches’, were recently discovered in the accreting pulsar NGC 300 ULX-1 by the Neutron Star Interior Composition Explorer mission. Unlike previous antiglitches detected in decelerating magnetars, these are the first antiglitches recorded in an accelerating pulsar. One standard theory is that pulsar spin-up glitches are caused by avalanches of collectively unpinning vortices that transfer angular momentum from the superfluid interior to the crust of a neutron star. Here, we test whether vortex avalanches are also consistent with the antiglitches in NGC 300 ULX-1, with the angular momentum transfer reversed. We perform N-body simulations of up to 5 × 103 pinned vortices in two dimensions in secularly accelerating and decelerating containers. Vortex avalanches routinely occur in both scenarios, propagating inwards and outwards, respectively. The implications for observables, such as size and waiting time statistics, are considered briefly.
Nuclear reactions heat and cool the crust of accreting neutron stars and need to be understood to interpret observations of X-ray bursts and long-term cooling in transiently accreting systems. It was recently suggested that previously ignored neutron transfer reactions may play a significant role in the nuclear processes. We present results from full nuclear network calculations that now include these reactions and determine their impact on crust composition, crust impurity, heating, and cooling. We find that a large number of neutron transfer reactions indeed occur and impact crust models. In particular, we identify a new type of reaction cycle that brings a pair of nuclei across the nuclear chart into equilibrium via alternating neutron capture and neutron release, interspersed with a neutron transfer. While neutron transfer reactions lead to changes in crust model predictions and need to be considered in future studies, previous conclusions concerning heating, cooling, and compositional evolution are remarkably robust.
- Publication Date:
- NSF-PAR ID:
- 10362680
- Journal Name:
- The Astrophysical Journal
- Volume:
- 925
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 205
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation–hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection frommore »
-
Abstract We study pinning and unpinning of superfluid vortices in the inner crust of a neutron star using three-dimensional dynamical simulations. Strong pinning occurs for certain lattice orientations of an idealized, body-centered-cubic lattice and occurs generally in an amorphous or impure nuclear lattice. The pinning force per unit length is ∼1016dyn cm−1for a vortex–nucleus interaction that is repulsive and ∼1017dyn cm−1for an attractive interaction. The pinning force is strong enough to account for observed spin jumps (glitches). Vortices forced through the lattice move with a slipstick character; for a range of superfluid velocities, the vortex can be in either a cold, pinned state or a hot, unpinned state, with strong excitation of Kelvin waves on the vortex. This two-state nature of vortex motion sets the stage for large-scale vortex movement that creates an observable spin glitch. We argue that the vortex array is likely to become tangled as a result of repeated unpinnings and repinnings. We conjecture that during a glitch, the Kelvin-wave excitation spreads rapidly along the direction of the mean superfluid vorticity and slower in the direction perpendicular to it, akin to an anisotropic deflagration.
-
Abstract Numerical simulations of neutron star–neutron star and neutron star–black hole binaries play an important role in our ability to model gravitational-wave and electromagnetic signals powered by these systems. These simulations have to take into account a wide range of physical processes including general relativity, magnetohydrodynamics, and neutrino radiation transport. The latter is particularly important in order to understand the properties of the matter ejected by many mergers, the optical/infrared signals powered by nuclear reactions in the ejecta, and the contribution of that ejecta to astrophysical nucleosynthesis. However, accurate evolutions of the neutrino transport equations that include all relevant physical processes remain beyond our current reach. In this review, I will discuss the current state of neutrino modeling in general relativistic simulations of neutron star mergers and of their post-merger remnants. I will focus on the three main types of algorithms used in simulations so far: leakage, moments, and Monte-Carlo scheme. I will review the advantages and limitations of each scheme, as well as the various neutrino–matter interactions that should be included in simulations. We will see that the quality of the treatment of neutrinos in merger simulations has greatly increased over the last decade, but also that many potentiallymore »
-
Abstract The rapid neutron capture process (
r -process) is one of the main mechanisms whereby elements heavier than iron are synthesized, and is entirely responsible for the natural production of the actinides. Kilonova emissions are modeled as being largely powered by the radioactive decay of species synthesized via ther -process. Given that ther -process occurs far from nuclear stability, unmeasured beta-decay rates play an essential role in setting the timescale for ther -process. In an effort to better understand the sensitivity of kilonova modeling to different theoretical global beta-decay descriptions, we incorporate these into nucleosynthesis calculations. We compare the results of these calculations and highlight differences in kilonova nuclear energy generation and light-curve predictions, as well as final abundances and their implications for nuclear cosmochronometry. We investigate scenarios where differences in beta-decay rates are responsible for increased nuclear heating on timescales of days that propagates into a significantly increased average bolometric luminosity between 1 and 10 days post-merger. We identify key nuclei, both measured and unmeasured, whose decay rates directly impact nuclear heating generation on timescales responsible for light-curve evolution. We also find that uncertainties in beta-decay rates significantly impact age estimates from cosmochronometry.