Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dust has the potential to play a significant role in the nutrient dynamics of alpine watersheds with important ecological implications. However, little is known about how dust nutrients circulate through the environment and which watershed characteristics facilitate dust impacts on water quality. This study explored the contribution of dust‐deposited nutrients, focusing on a high‐elevation Long Term Ecological Research site, where dust samples have been continuously collected since 2017. We incorporated observed dust nutrient compositions, including fractions of inorganic and organic nitrogen and phosphorus, into a popular hydrological model, the Soil and Water Assessment Tool, and ran simulations for 2019–2021. By comparing simulations with and without dust nutrient inputs, we estimated the impact of dust‐deposited nutrients on individual watershed processes. Results revealed a significant contribution of dust‐deposited nutrients, particularly soluble reactive phosphorus (SRP), to several nutrient cycling and transport pathways. Notably, dust contributed up to 19.3% of the SRP load in annual streamflow (increasing monthly streamflow concentration by up to 10.9 μg ). Spatial analysis of model estimates demonstrated a relationship between topography, soil type, and the cycling and transport of dust nutrients. The largest dust nutrient contributions were found in catchment areas with lower slope and less hydric soils, where other natural mobilization processes may be limited. This comparative modeling approach stresses the importance of including dust nutrients in watershed models, especially in oligotrophic systems, and has potential to validate these findings elsewhere and identify how watershed characteristics may either mollify or accentuate the impacts of dust deposition on mountain freshwater systems.more » « less
-
Abstract Drought and human land use have increased dust emissions in the western United States. However, the ecological sensitivity of remote lakes to dust deposition is not well understood and to date has largely been assessed through spatial and temporal correlations. Using in situ bioassays, we investigated the effects of dust enrichment on the production, chlorophylla(Chla) concentration, and taxonomic composition of phytoplankton and microbial communities in three western US mountain lakes. We found that dust‐derived nutrients increased Chlaconcentration in all three lakes, but the magnitude of the effect varied from 32% to 226%. This variation was related to pre‐existing lake conditions, such as trophic status, pH, and nutrient limitation. In Castle Lake, co‐limited by N and P, dust bioassays showed an increase in Chlacontent per cell but suppressed primary production and increased dark14C uptake. In contrast, both Flathead Lake and The Loch were primarily P‐limited and exhibited increases in Chlaconcentration. The contrasting Chlaand primary production results from Castle Lake are consistent with the alleviation of nitrogen limitation where energy Adenosine triphosphate (ATP) is used for nutrient assimilation instead of carbon fixation. Dust additions also altered the algal and microbial communities. The latter included the addition of new phyla (e.g.,Deinococcota), indicating that dust‐delivered microbes have the potential to thrive in receiving lakes. Our study provides the first short‐term experimental in situ evidence of rapid ecosystem effects in mountain lakes following dust exposure. The results emphasize the need for continued research in this area to understand interactions of both the short‐ and long‐term consequences of dust‐induced perturbations in remote lakes in the context of global changes.more » « less
-
Abstract Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0–75 mg L−1), temperature (19–27°C), and pH (6.3–7.3) on the growth rate of the algal speciesScenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high‐risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust‐induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.more » « less
-
Abstract Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under‐recognized. We introduce the concept of the lake smoke‐day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke‐day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke‐days a year, with 89.6% of lakes receiving over 30 lake smoke‐days, and lakes in some regions experiencing up to 4 months of cumulative smoke‐days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.more » « less
-
Free, publicly-accessible full text available August 1, 2026
-
This study collected summer meltwater runoff samples from several glacier watersheds of the northeast Tibetan Plateau during June-July 2017, and measured the concentrations of 17 trace elements (Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Mo, Cd, In, Sb, Cs, Ba) in meltwater suspended particulate matter (SPM), in order to reveal the elemental concentration, spatial distribution, and water quality in remote glacier watershed under regional anthropogenic activities. Results showed that, the concentration of heavy metal elements was relatively high in Yuzhufeng Glacier basin, ranging from 0.57 μg/L (In) to 1,551.6 μg/L (Ba), whereas in Qiyi Glacier basin it was the lowest, ranging from 0.02 to 85.05 μg/L; and relatively medium in other glacier watersheds, with total elemental concentration varying from 1,503.9 to 1726.2 μg/L. Moreover, enrichment factors (EFs) of SPM heavy metals showed significantly higher value in the downstream than that of upper glacier region of the watershed. Most heavy metals with low EFs mainly originated from crust dust, while others with higher EFs (e.g., Cd, Sb) probably originated from anthropogenic sources. Spatially, the EFs of heavy metals were higher in Yuzhufeng and Laohugou Glacier basins; while in other regions the EFs were relatively low, which may be caused by regional land-surface and atmospheric environmental differences surrounding the various glacier watersheds. Compared with other remote locations in global range, heavy metals level (e.g., Cu, Ni, and Zn) in this region is relatively higher. Meanwhile, we find that, though the water quality of the glacier basin in northeast Tibetan Plateau was relatively clean and pollution-free, it is still obviously affected by regional anthropogenic activities. Mining activities, transportation and natural weathering and erosion processes in the study areas have important effects on the content of heavy metal pollutants of river-water SPM in the glacier watershed. Moreover, backward air-mass trajectories demonstrated the potential atmospheric pollutants transport from the surrounding cities and suburbs, to deposit in the snowpack and glaciers, and then melted out and released into meltwater runoff. This study provides a new perspective on more complete view of heavy metals distribution in glacier watershed, and new understanding for the cryosphere water environment evaluation in the Tibetan Plateau region.more » « less
An official website of the United States government
