skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational radiation‐reaction driven instabilities in rotating neutron stars
Abstract We investigate in this work two different types of instabilities that set limits on the rotation rates of neutron (compact) stars. The first one is that caused by rotation at the Kepler frequency, at which mass shedding at the star's equator sets in. The second limit is set by instabilities driven by the growth of gravitational radiation‐reaction (GRR) driven‐modes of order, which are moderated by shear and bulk viscosity. The calculations are performed for two relativistic models for the nuclear equation of state, DD2 and ACB4. The latter accounts for a phase transition that gives rise to the existence of so‐called mass‐twin compact stars. Our results confirm that the stable rotation periods of cold neutron stars are determined by themodes and that these modes are excited at rotation periods between 1 and 1.4 ms (20–30% above the Kepler periods of these stars). The situation is reversed in hot neutron stars where bulk viscosity damps the GRR modes, pushing the excitation period of the‐mode instability to values below the Kepler period. For cold mass‐twin compact stars, we find that theinstability sets in at rotation periods between 0.8 and 1 ms (25–30% below the Kepler period). This feature may allow one to distinguish conventional neutron stars from their possibly existing mass‐twin counterparts observationally, provided the‐mode instability, which is expected to compete with the‐mode instability, sets the limit on stable rotation of compact stars.  more » « less
Award ID(s):
2012152 1714068
PAR ID:
10250429
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Astronomische Nachrichten
Volume:
342
Issue:
5
ISSN:
0004-6337
Page Range / eLocation ID:
p. 799-807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less
  2. Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s. 
    more » « less
  3. Abstract Weakly nonlinear, bi‐periodic patterns of waves that propagate in the‐direction with amplitude variation in the‐direction are generated in a laboratory. The amplitude variation in the‐direction is studied within the framework of the vector (vNLSE) and scalar (sNLSE) nonlinear Schrödinger equations using the uniform‐amplitude, Stokes‐like solution of the vNLSE and the Jacobi elliptic sine function solution of the sNLSE. The wavetrains are generated using the Stokes‐like solution of vNLSE; however, a comparison of both predictions shows that while they both do a reasonably good job of predicting the observed amplitude variation in, the comparison with the elliptic function solution of the sNLSE has significantly less error when the ratio of‐wavenumber to the two‐dimensional wavenumber is less than about 0.25. For ratios between about 0.25 and 0.30 (the limit of the experiments), the two models have comparable errors. When the ratio is less than about 0.17, agreement with the vNLSE solution requires a third‐harmonic term in the‐direction, obtained from a Stokes‐type expansion of interacting, symmetric wavetrains. There is no evidence of instability growth in the‐direction, consistent with the work of Segur and colleagues, who showed that dissipation stabilizes the modulational instability. Finally, there is some extra amplitude variation in, which is examined via a qualitative stability calculation that allows symmetry breaking in that direction. 
    more » « less
  4. Abstract In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling. 
    more » « less
  5. Abstract Nitrification, the microbial conversion of ammonium to nitrite then to nitrate, occurs throughout the oceanic water column, yet the environmental factors influencing the production of nitrate in the euphotic zone (EZ) remain unclear. In this study, the natural abundances of N and O isotopes (δ15N and δ18O, respectively) in nitrate were used in an existing model framework to quantify nitrate contributed by EZ nitrification in the California Current Ecosystem (CCE) during two anomalously warm years. Model data estimated that between 6% and 36% of the EZ nitrate reservoirs were derived from the combined steps of nitrification within the EZ. The CCE data set found nitrification contributions to EZ nitrate to be positively correlated with nitrite concentrations () at the depth of the primary nitrite maximum (PNM). Building on this correlation, EZ nitrification in the southern California Current was estimated to contribute on average 20% ± 6% to EZ nitrate as inferred using the PNMof the long‐term California Cooperative Oceanic Fisheries Investigation (CalCOFI) survey record. A multiple linear regression analysis of the CalCOFI PNMtime series identified two conditions that led to positive deviations in. Enhanced PNM, and potentially enhanced EZ nitrification, may be linked to (1) reduced phytoplankton competition for ammonium () andas interpreted from particulate organic carbon:chlorophyll ratios, and/or (2) to increased supply of(and thenoxidation to) from the degradation of organic nitrogen as interpreted from particulate organic nitrogen concentrations. 
    more » « less