- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Seibold, Benjamin (2)
-
Cheng, Chungho (1)
-
Finkelstein, Joshua (1)
-
Fiorin, Giacomo (1)
-
Grønbech-Jensen, Niels (1)
-
Ketcheson, D. (1)
-
Rosales, Rodolfo Ruben (1)
-
Seibold, B. (1)
-
Shirokoff, D. (1)
-
Shirokoff, David (1)
-
Zhou, D. (1)
-
Zhou, Dong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Moxey, D. (1)
-
Peiro, J. (1)
-
Schwab, C. (1)
-
Sherwin, S. (1)
-
Vincent, P. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rosales, Rodolfo Ruben ; Seibold, Benjamin ; Shirokoff, David ; Zhou, Dong ( , Computer Methods in Applied Mechanics and Engineering)
-
Ketcheson, D. ; Seibold, B. ; Shirokoff, D. ; Zhou, D. ( , Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational Science and Engineering. Springer.)Sherwin, S. ; Moxey, D. ; Peiro, J. ; Vincent, P. ; Schwab, C. (Ed.)Runge-Kutta time-stepping methods in general suffer from order reduction: the observed order of convergence may be less than the formal order when applied to certain stiff problems. Order reduction can be avoided by using methods with high stage order. However, diagonally-implicit Runge-Kutta (DIRK) schemes are limited to low stage order. In this paper we explore a weak stage order criterion, which for initial boundary value problems also serves to avoid order reduction, and which is compatible with a DIRK structure. We provide specific DIRK schemes of weak stage order up to 3, and demonstrate their performance in various examples.