skip to main content

Title: DIRK Schemes with High Weak Stage Order
Runge-Kutta time-stepping methods in general suffer from order reduction: the observed order of convergence may be less than the formal order when applied to certain stiff problems. Order reduction can be avoided by using methods with high stage order. However, diagonally-implicit Runge-Kutta (DIRK) schemes are limited to low stage order. In this paper we explore a weak stage order criterion, which for initial boundary value problems also serves to avoid order reduction, and which is compatible with a DIRK structure. We provide specific DIRK schemes of weak stage order up to 3, and demonstrate their performance in various examples.
Authors:
; ; ;
Editors:
Sherwin, S.; Moxey, D.; Peiro, J.; Vincent, P.; Schwab, C.
Award ID(s):
2012271 1719640 1719693 2012268
Publication Date:
NSF-PAR ID:
10259943
Journal Name:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational Science and Engineering. Springer.
Volume:
134
Sponsoring Org:
National Science Foundation
More Like this
  1. Simulation of flow and transport in petroleum reservoirs involves solving coupled systems of advection-diffusion-reaction equations with nonlinear flux functions, diffusion coefficients, and reactions/wells. It is important to develop numerical schemes that can approximate all three processes at once, and to high order, so that the physics can be well resolved. In this paper, we propose an approach based on high order, finite volume, implicit, Weighted Essentially NonOscillatory (iWENO) schemes. The resulting schemes are locally mass conservative and, being implicit, suited to systems of advection-diffusion-reaction equations. Moreover, our approach gives unconditionally L-stable schemes for smooth solutions to the linear advection-diffusion-reaction equationmore »in the sense of a von Neumann stability analysis. To illustrate our approach, we develop a third order iWENO scheme for the saturation equation of two-phase flow in porous media in two space dimensions. The keys to high order accuracy are to use WENO reconstruction in space (which handles shocks and steep fronts) combined with a two-stage Radau-IIA Runge-Kutta time integrator. The saturation is approximated by its averages over the mesh elements at the current time level and at two future time levels; therefore, the scheme uses two unknowns per grid block per variable, independent of the spatial dimension. This makes the scheme fairly computationally efficient, both because reconstructions make use of local information that can fit in cache memory, and because the global system has about as small a number of degrees of freedom as possible. The scheme is relatively simple to implement, high order accurate, maintains local mass conservation, applies to general computational meshes, and appears to be robust. Preliminary computational tests show the potential of the scheme to handle advection-diffusion-reaction processes on meshes of quadrilateral gridblocks, and to do so to high order accuracy using relatively long time steps. The new scheme can be viewed as a generalization of standard cell-centered finite volume (or finite difference) methods. It achieves high order in both space and time, and it incorporates WENO slope limiting.« less
  2. While implicit Runge–Kutta (RK) methods possess high order accuracy and important stability properties, implementation difficulties and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present Irksome , a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our solver techniques for various problems.
  3. We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aidmore »of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered.« less
  4. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimatesmore »in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $ \tau \le \rho {h}^{\frac{4}{3}}$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h .« less
  5. ABSTRACT This paper presents high-order Runge–Kutta (RK) discontinuous Galerkin methods for the Euler–Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane–Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where differentmore »source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples – including a toy model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation – are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock-capturing capability, and total energy conservation.« less