skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DIRK Schemes with High Weak Stage Order
Runge-Kutta time-stepping methods in general suffer from order reduction: the observed order of convergence may be less than the formal order when applied to certain stiff problems. Order reduction can be avoided by using methods with high stage order. However, diagonally-implicit Runge-Kutta (DIRK) schemes are limited to low stage order. In this paper we explore a weak stage order criterion, which for initial boundary value problems also serves to avoid order reduction, and which is compatible with a DIRK structure. We provide specific DIRK schemes of weak stage order up to 3, and demonstrate their performance in various examples.  more » « less
Award ID(s):
2012271 1719640 1719693 2012268
PAR ID:
10259943
Author(s) / Creator(s):
; ; ;
Editor(s):
Sherwin, S.; Moxey, D.; Peiro, J.; Vincent, P.; Schwab, C.
Date Published:
Journal Name:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational Science and Engineering. Springer.
Volume:
134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the spatial manifestations of order reduction that occur when timestepping initial-boundary-value problems (IBVPs) with high-order Runge–Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge–Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed. 
    more » « less
  2. Explicit Runge--Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method's order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems. 
    more » « less
  3. While implicit Runge–Kutta (RK) methods possess high order accuracy and important stability properties, implementation difficulties and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present Irksome , a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our solver techniques for various problems. 
    more » « less
  4. We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered. 
    more » « less
  5. We consider high-order discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order and a high-order parabolic update using another limiting operator. The proposed technique, which is agnostic to the space discretization, allows one to optimize the time step restrictions induced by the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff ordinary differential equations and nonlinear conservation equations. 
    more » « less