skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012560

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We derive a class of exact solutions for Stokes flow in infinite and semi‐infinite channel geometries with permeable walls. These simple, explicit, series expressions for both pressure and Stokes flow are valid for all permeability values. At the channel walls, we impose a no‐slip condition for the tangential fluid velocity and a condition based on Darcy's law for the normal fluid velocity. Fluid flow across the channel boundaries is driven by the pressure drop between the channel interior and exterior; we assume the exterior pressure to be constant. We show how the ground state is an exact solution in the infinite channel case. For the semi‐infinite channel domain, the ground‐state solutions approximate well the full exact solution in the bulk and we derive a method to improve their accuracy at the transverse wall. This study is motivated by the need to quantitatively understand the detailed fluid dynamics applicable in a variety of engineering applications including membrane‐based water purification, heat and mass transfer, and fuel cells. 
    more » « less
  2. In this work, we develop a computational method to provide real-time detection for water bottom topography based on observations on surface measurements, and we design an inverse problem to achieve this task. The forward model that we use to describe the feature of the water surface is thetruncated Korteweg-de Vries equation, and we formulate the inversion mechanism as an online parameter estimation problem, which is solved by a direct filter method. Numerical experiments are carried out to show that our method can effectively detect abrupt changes of water depth. 
    more » « less
  3. A ubiquitous arrangement in nature is a free-flowing fluid coupled to a porous medium, for example a river or lake lying above a porous bed. Depending on the environmental conditions, thermal convection can occur and may be confined to the clear fluid region, forming shallow convection cells, or it can penetrate into the porous medium, forming deep cells. Here, we combine three complementary approaches – linear stability analysis, fully nonlinear numerical simulations and a coarse-grained model – to determine the circumstances that lead to each configuration. The coarse-grained model yields an explicit formula for the transition between deep and shallow convection in the physically relevant limit of small Darcy number. Near the onset of convection, all three of the approaches agree, validating the predictive capability of the explicit formula. The numerical simulations extend these results into the strongly nonlinear regime, revealing novel hybrid configurations in which the flow exhibits a dynamic shift from shallow to deep convection. This hybrid shallow-to-deep convection begins with small, random initial data, progresses through a metastable shallow state and arrives at the preferred steady state of deep convection. We construct a phase diagram that incorporates information from all three approaches and depicts the regions in parameter space that give rise to each convective state. 
    more » « less