skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stokes flow solutions in infinite and semi‐infinite porous channels
Abstract We derive a class of exact solutions for Stokes flow in infinite and semi‐infinite channel geometries with permeable walls. These simple, explicit, series expressions for both pressure and Stokes flow are valid for all permeability values. At the channel walls, we impose a no‐slip condition for the tangential fluid velocity and a condition based on Darcy's law for the normal fluid velocity. Fluid flow across the channel boundaries is driven by the pressure drop between the channel interior and exterior; we assume the exterior pressure to be constant. We show how the ground state is an exact solution in the infinite channel case. For the semi‐infinite channel domain, the ground‐state solutions approximate well the full exact solution in the bulk and we derive a method to improve their accuracy at the transverse wall. This study is motivated by the need to quantitatively understand the detailed fluid dynamics applicable in a variety of engineering applications including membrane‐based water purification, heat and mass transfer, and fuel cells.  more » « less
Award ID(s):
2211035 1636104 2211001 2012560 2210992
PAR ID:
10401847
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
151
Issue:
1
ISSN:
0022-2526
Page Range / eLocation ID:
p. 116-140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well known that drag created by turbulent flow over a surface can be reduced by oscillating the surface in the direction transverse to the mean flow. Efforts to understand the mechanism by which this occurs often apply the solution for laminar flow in the infinite half-space over a planar, oscillating wall (Stokes’ second problem) through the viscous and buffer layer of the streamwise turbulent flow. This approach is used for flows having planar surfaces, such as channel flow, and flows over curved surfaces, such as the interior of round pipes. However, surface curvature introduces an additional effect that can be significant, especially when the viscous region is not small compared to the pipe radius. The exact solutions for flow over transversely oscillating walls in a laminar pipe and planar channel flow are compared to the solution of Stokes’ second problem to determine the effects of wall curvature and/or finite domain size. It is shown that a single non-dimensional parameter, the Womersley number, can be used to scale these effects and that both effects become small at a Womersley number of greater than about 6.51, which is the Womersley number based on the thickness of the Stokes’ layer of the classical solution. 
    more » « less
  2. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  3. Solovjovs, Sergejs (Ed.)
    In the present paper, we summarize the results of the research devoted to the problem of stability of the fluid flow moving in a channel with flexible walls and interacting with the walls. The walls of the vessel are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be transferred and consumed by the structure (the walls), inducing “traveling wave flutter.” The problem of stability of fluid-structure interaction splits into two parts: (a) stability of fluid flow in the channel with harmonically moving walls and (b) stability of solid structure participating in the energy exchange with the flow. Stability of fluid flow, the main focus of the research, is obtained by solving the initial boundary value problem for the stream function. The main findings of the paper are the following: (i) rigorous formulation of the initial boundary problem for the stream function, ψ x , y , t , induced by the fluid-structure interaction model, which takes into account the axisymmetric pattern of the flow and “no-slip” condition near the channel walls; (ii) application of a double integral transformation (the Fourier transformation and Laplace transformation) to both the equation and boundary and initial conditions, which reduces the original partial differential equation to a parameter-dependent ordinary differential equation; (iii) derivation of the explicit formula for the Fourier transform of the stream function, ψ ˜ k , y , t ; (iv) evaluation of the inverse Fourier transform of ψ ˜ k , y , t and proving that reconstruction of ψ x , y , t can be obtained through a limiting process in the complex k -plane, which allows us to use the Residue theorem and represent the solution in the form of an infinite series of residues. The result of this research is an analytical solution describing blood flowing through a channel with flexible walls that are being perturbed in the form of a traveling wave. 
    more » « less
  4. null (Ed.)
    We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow. 
    more » « less
  5. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less