skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012730

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Critical Zone (CZ) scientists have advanced understanding of Earth's surface through process‐based research that quantifies water, energy, and mass fluxes in predominantly undisturbed systems. However, the CZ is being increasingly altered by humans through climate and land use change. Expanding the scope of CZ science to include both human‐ and non‐human controls on the CZ is important for understanding anthropogenic impacts to Earth's surface processes and ecosystem services. Here, we share perspectives from predominantly U.S.‐based, early career CZ scientists centered around broadening the scope of CZ science to focus on societally relevant science through a transdisciplinary science framework. We call for increased training on transdisciplinary methods and collaboration opportunities across disciplines and with stakeholders to foster a scientific community that values transdisciplinary science alongside physical science. Here, we build on existing transdisciplinary research frameworks by highlighting the need for institutional support to include and educate graduate students throughout the research processes. We also call for graduate‐student‐led initiatives to increase their own exposure to transdisciplinary science through activities such as transdisciplinary‐focused seminars and symposiums, volunteering with local conservation groups, and participating in internships outside academia. 
    more » « less
  2. Abstract Geophysical methods have long been used in earth and environmental science for the characterization of subsurface properties. While imaging the subsurface opens the “black box” of subsurface heterogeneity, we argue here that these tools can be used in a more powerful way than characterization, which is to develop and test hypotheses. Critical zone science has opened new questions and hypotheses in the hydrologic sciences holistically around controls on water fluxes between surface, biological, and underground compartments. While groundwater flows can be monitored in boreholes, water fluxes from the atmosphere to the aquifer through the soil and the root system are more complex to study than boreholes can inform upon. Here, we focus on the successful application of various geophysical tools to explore hypotheses in critical zone hydrogeology and highlight areas where future contributions could be made. Specifically, we look at questions around subsurface structural controls on flow, the dimensionality and partitioning of those flows in the subsurface, plant water uptake, and how geophysics may be used to constrain reactive transport. We also outline areas of future research that may push the boundaries of how geophysical methods are used to quantify critical zone complexity. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsScience of Water > Hydrological ProcessesWater and Life > Methods 
    more » « less
  3. Abstract The western U.S. is experiencing shifts in recharge due to climate change, and it is currently unclear how hydrologic shifts will impact geochemical weathering and stream concentration–discharge (C–Q) patterns. Hydrologists often useC–Qanalyses to assess feedbacks between stream discharge and geochemistry, given abundant stream discharge and chemistry data. Chemostasis is commonly observed, indicating that geochemical controls, rather than changes in discharge, are shaping streamC–Qpatterns. However, fewC–Qstudies investigate how geochemical reactions evolve along groundwater flowpaths before groundwater contributes to streamflow, resulting in potential omission of importantC–Qcontrols such as coupled mineral dissolution and clay precipitation and subsequent cation exchange. Here, we use field observations—including groundwater age, stream discharge, and stream and groundwater chemistry—to analyseC–Qrelations in the Manitou Experimental Forest in the Colorado Front Range, USA, a site where chemostasis is observed. We combine field data with laboratory analyses of whole rock and clay x‐ray diffraction and soil cation‐extraction experiments to investigate the role that clays play in influencing stream chemistry. We use Geochemist's Workbench to identify geochemical reactions driving stream chemistry and subsequently suggest how climate change will impact streamC–Qtrends. We show that as groundwater age increases,C–Qslope and stream solute response are not impacted. Instead, primary mineral dissolution and subsequent clay precipitation drive strong chemostasis for silica and aluminium and enable cation exchange that buffers calcium and magnesium concentrations, leading to weak chemostatic behaviour for divalent cations. The influence of clays on streamC–Qhighlights the importance of delineating geochemical controls along flowpaths, as upgradient mineral dissolution and clay precipitation enable downgradient cation exchange. Our results suggest that geochemical reactions will not be impacted by future decreasing flows, and thus where chemostasis currently exists, it will continue to persist despite changes in recharge. 
    more » « less
  4. Abstract The western U.S. is experiencing increasing rain to snow ratios due to climate change, and scientists are uncertain how changing recharge patterns will affect future groundwater‐surface water connection. We examined how watershed topography and streambed hydraulic conductivity impact groundwater age and stream discharge at eight sites along a headwater stream within the Manitou Experimental Forest, CO USA. To do so, we measured: (a) continuous stream and groundwater discharge/level and specific conductivity from April to November 2021; (b) biweekly stream and groundwater chemistry; (c) groundwater chlorofluorocarbons and tritium in spring and fall; (d) streambed hydraulic conductivity; and (e) local slope. We used the chemistry data to calculate fluorite saturation states that were used to inform end‐member mixing analysis of streamflow source. We then combined chlorofluorocarbon and tritium data to estimate the age composition of riparian groundwater. Our data suggest that future stream drying is more probable where local slope is steep and streambed hydraulic conductivity is high. In these areas, groundwater source shifted seasonally, as indicated by age increases, and we observed a high fraction of groundwater in streamflow, primarily interflow from adjacent hillslopes. In contrast, where local slope is flat and streambed hydraulic conductivity is low, streamflow is more likely to persist as groundwater age was seasonally constant and buffered by storage in alluvial sediments. Groundwater age and streamflow paired with characterization of watershed topography and subsurface characteristics enabled identification of likely controls on future stream drying patterns. 
    more » « less
  5. Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates. 
    more » « less
  6. Abstract This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long‐Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time‐lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process‐based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally. 
    more » « less
  7. Groundwater flow paths and processes that govern metal mobility and transport are difficult to characterize in mountainous bedrock watersheds. Despite the difficulty in holistic characterization, conceptual understanding of subsurface hydrologic and geochemical processes is key to developing remediation plans for locations affected by acid mine drainage, such as the Upper Animas River watershed in southwestern Colorado, USA. Stable isotopes of water and rare earth elements were utilized to evaluate groundwater flow and metal sources within this complex catchment. Stable isotope samples collected from draining mine adits and springs display systematic spatial variation wherein sample sites at higher elevations have greater seasonal variability than sites at lower elevations. The Upper Cement Creek watershed, where multiple draining mines are present, displays the lowest seasonal variation in stable isotopic signatures, potentially indicating the presence of a large, well-mixed volume of groundwater storage or interbasin groundwater flow. Rare earth elements display statistically significant variation between different alteration styles in the catchment. Overprinting of regional propylitic alteration is evident based on enrichment of middle rare earth elements in acidic springs and mines that are not spatially associated with surficial exposures of acid generating alteration styles. Europium anomaly and middle rare earth enrichment signatures from two flooded mine tunnels on opposite sides of a watershed divide indicate connections to the same subsurface flooded mine workings. 
    more » « less
  8. Free, publicly-accessible full text available February 1, 2026