skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating observations and models to determine the effect of seasonally frozen ground on hydrologic partitioning in alpine hillslopes in the Colorado Rocky Mountains, USA
Abstract This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long‐Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time‐lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process‐based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  more » « less
Award ID(s):
1637686 2012730
PAR ID:
10367223
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
10
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Woody encroachment—the expansion of woody shrubs into grasslands—is a widely documented phenomenon with global significance for the water cycle. However, its effects on watershed hydrology, including streamflow and groundwater recharge, remain poorly understood. A key challenge is the limited understanding of how changes to root abundance, size and distribution across soil depths influence infiltration and preferential flow. We hypothesised that woody shrubs would increase and deepen coarse‐root abundance and effective soil porosity, thus promoting deeper soil water infiltration and increasing soil water flow velocities. To test this hypothesis, we conducted a study at the Konza Prairie Biological Station in Kansas, where roughleaf dogwood (Cornus drummondii) is the predominant woody shrub encroaching into native tallgrass prairie. We quantified the distribution of coarse and fine roots and leveraged soil moisture time series and electrical resistivity imaging to analyse soil water flow beneath shrubs and grasses. We observed a greater fraction of coarse roots beneath shrubs compared to grasses, which was concurrent with greater saturated hydraulic conductivity and effective porosity. Half‐hourly rainfall and soil moisture data show that the average soil water flow through macropores was 135% greater beneath shrubs than grasses at the deepest B horizon, consistent with greater saturated hydraulic conductivity. Soil‐moisture time series and electrical resistivity imaging also indicated that large rainfall events and greater antecedent wetness promoted more flow in the deeper layers beneath shrubs than beneath grasses. These findings suggest that woody encroachment alters soil hydrologic processes with cascading consequences for ecohydrological processes, including increased vertical connectivity and potential groundwater recharge. 
    more » « less
  2. The goal of this project is to characterize and constrain the physical mechanisms that control snowmelt delivery to streams in headwater basins. This project leverages new observation and modeling techniques to quantify and simulate the snow distribution, water holding capacity, snowmelt production, and dynamic flowpaths. This is achieved through state-of-the-science observation techniques including ground penetrating radar (GPR), Terrestrial LiDAR Scanning (TLS), global positioning system (GPS) instrumentation, a network of sensor nodes continuously measuring soil moisture and snow depth, and a weir to monitor streamflow. Finally, hydrologic modeling will be conducted with the Structure for Unified Multiple Modeling Alternatives (SUMMA) model to assess the impact of modeling decisions and the ability to simulate snowmelt dynamics. The overarching research question of this project is: How do snowpack liquid water storage and through-snow hydrologic flowpaths affect hillslope-stream connectivity, and how do these processes evolve throughout the snowmelt season? This research question will be investigated in a snow-dominated headwater catchment. This work will observe and simulate the spatially and temporally variable snowmelt season to complete the following project objectives: O1) Map the dynamics of catchment snow water equivalent (SWE) using TLS surveys, GPR surveys, a network of sensor nodes, and manual observations. O2) Monitor the spatial and temporal progression of snowpack liquid water content and transport using combined TLS and GPR surveys, automated GPS signal attenuation, soil moisture sensors, and catchment streamflow response. O3) Evaluate the skill of hydrologic models to simulate the observed dynamics of the snowpack, soil, and streamflow response by systematically analyzing multiple model representations of hydrologic processes and scaling behavior. The work builds upon decades of local research in hydrology, biogeochemistry, and ecological processes. 
    more » « less
  3. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future. 
    more » « less
  4. Abstract. Arctic regions are under immense pressure from a continuously warming climate. During the winter and shoulder seasons, recently deglaciated sediments are particularly sensitive to human-induced warming. Understanding the physical mechanisms and processes that determine soil liquid moisture availability contributes to the way we conceptualize and understand the development and functioning of terrestrial Arctic ecosystems. However, harsh weather and logistical constraints limit opportunities to directly observe subsurface processes year-round; hence automated and uninterrupted strategies of monitoring the coupled heat and water movement in soils are essential. Geoelectrical monitoring using electrical resistivity tomography (ERT) has proven to be an effective method to capture soil moisture distribution in time and space. ERT instrumentation has been adapted for year-round operation in high-latitude weather conditions. We installed two geoelectrical monitoring stations on the forefield of a retreating glacier in Svalbard, consisting of semi-permanent surface ERT arrays and co-located soil sensors, which track seasonal changes in soil electrical resistivity, moisture, and temperature in 3D. One of the stations observes recently exposed sediments (5–10 years since deglaciation), whilst the other covers more established sediments (50–60 years since deglaciation). We obtained a 1-year continuous measurement record (October 2021–September 2022), which produced 4D images of soil freeze–thaw transitions with unprecedented detail, allowing us to calculate the velocity of the thawing front in 3D. At its peak, this was found to be 1 m d−1 for the older sediments and 0.4 m d−1 for the younger sediments. Records of soil moisture and thermal regime obtained by sensors help define the conditions under which snowmelt takes place. Our data reveal that the freeze–thaw shoulder period, during which the surface soils experienced the zero-curtain effect, lasted 23 d at the site closer to the glacier but only 6 d for the older sediments. Furthermore, we used unsupervised clustering to classify areas of the soil volume according to their electrical resistivity coefficient of variance, which enables us to understand spatial variations in susceptibility to water-phase transition. Novel insights into soil moisture dynamics throughout the spring melt will help parameterize models of biological activity to build a more predictive understanding of newly emerging terrestrial landscapes and their impact on carbon and nutrient cycling. 
    more » « less
  5. Soil sampling pits across three hillslope positions - toeslope, backslope, and summit - were dug in 2020 in watershed N4D (burned every 4 years) and N1D (burned annually) to characterize the impacts of woody encroachment on subsurface soil physical, chemical, and biological properties. Pits were hand-dug to 120 cm in the toeslope position and to 60 cm deep at the backslope and summit positions. Soil pits in N4D were dug directly under dogwood shrubs (Cornus drumondii) while pits in N1B were dug under grasses and forbs. Soil pit faces were photographed to determine root fractions with depth,  soil monoliths were take to charaterize soil macroporosity with depth while soil cores were taken in each horizon for water retention analysis.  Soil sensors were also installed at four soil depths at the toeslope position and 3 soil depths at the backslope and summit positions to record half hourly soil moisture, soil temperature, soil water potential, soil electrical conductivity, and soil carbon dioxide, and soil oxygen. In addition, geophysical measurements were taken in N4D using time-lapse electrical resistivity in 2023. 
    more » « less