skip to main content

Search for: All records

Award ID contains: 2012796

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives.

    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Fluvial silicon (Si) plays a critical role in controlling primary production, water quality, and carbon sequestration through supporting freshwater and marine diatom communities. Geological, biogeochemical, and hydrological processes, as well as climate and land use, dictate the amount of Si exported by streams. Understanding Si regimes—the seasonal patterns of Si concentrations—can help identify processes driving Si export. We analyzed Si concentrations from over 200 stream sites across the Northern Hemisphere to establish distinct Si regimes and evaluated how often sites moved among regimes over their period of record. We observed five distinct regimes across diverse stream sites, with nearly 60% of sites exhibiting multiple regime types over time. Our results indicate greater spatial and interannual variability in Si seasonality than previously recognized and highlight the need to characterize the watershed and climate variables that affect Si cycling across diverse ecosystems.

    more » « less
  3. Abstract

    Summer streamflow predictions are critical for managing water resources; however, warming‐induced shifts from snow to rain regimes impact low‐flow predictive models. Additionally, reductions in snowpack drive earlier peak flows and lower summer flows across the western United States increasing reliance on groundwater for maintaining summer streamflow. However, it remains poorly understood how groundwater contributions vary interannually. We quantify recession limb groundwater (RLGW), defined as the proportional groundwater contribution to the stream during the period between peak stream flow and low flow, to predict summer low flows across three diverse western US watersheds. We ask (a) how do snow and rain dynamics influence interannual variations of RLGW contributions and summer low flows?; (b) which watershed attributes impact the effectiveness of RLGW as a predictor of summer low flows? Linear models reveal that RLGW is a strong predictor of low flows across all sites and drastically improves low‐flow prediction compared to snow metrics at a rain‐dominated site. Results suggest that strength of RLGW control on summer low flows may be mediated by subsurface storage. Subsurface storage can be divided into dynamic (i.e., variability saturated) and deep (i.e., permanently saturated) components, and we hypothesize that interannual variability in dynamic storage contribution to streamflow drives RLGW variability. In systems with a higher proportion of dynamic storage, RLGW is a better predictor of summer low flow because the stream is more responsive to dynamic storage contributions compared to deep‐storage‐dominated systems. Overall, including RLGW improved low‐flow prediction across diverse watersheds.

    more » « less
  4. Abstract

    Riverine exports of silicon (Si) influence global carbon cycling through the growth of marine diatoms, which account for ∼25% of global primary production. Climate change will likely alter river Si exports in biome‐specific ways due to interacting shifts in chemical weathering rates, hydrologic connectivity, and metabolic processes in aquatic and terrestrial systems. Nonetheless, factors driving long‐term changes in Si exports remain unexplored at local, regional, and global scales. We evaluated how concentrations and yields of dissolved Si (DSi) changed over the last several decades of rapid climate warming using long‐term data sets from 60 rivers and streams spanning the globe (e.g., Antarctic, tropical, temperate, boreal, alpine, Arctic systems). We show that widespread changes in river DSi concentration and yield have occurred, with the most substantial shifts occurring in alpine and polar regions. The magnitude and direction of trends varied within and among biomes, were most strongly associated with differences in land cover, and were often independent of changes in river discharge. These findings indicate that there are likely diverse mechanisms driving change in river Si biogeochemistry that span the land‐water interface, which may include glacial melt, changes in terrestrial vegetation, and river productivity. Finally, trends were often stronger in months outside of the growing season, particularly in temperate and boreal systems, demonstrating a potentially important role of shifting seasonality for the flux of Si from rivers. Our results have implications for the timing and magnitude of silica processing in rivers and its delivery to global oceans.

    more » « less
  5. Geologic features (e.g., fractures and alluvial fans) can play an important role in the locations and volumes of groundwater discharge and degree of groundwater-surface water (GW-SW) interactions. However, the role of these features in controlling GW-SW dynamics and streamflow generation processes are not well constrained. GW-SW interactions and streamflow generation processes are further complicated by variability in precipitation inputs from summer and fall monsoon rains, as well as declines in snowpack and changing melt dynamics driven by warming temperatures. Using high spatial and temporal resolution radon and water stable isotope sampling and a 1D groundwater flux model, we evaluated how groundwater contributions and GW-SW interactions varied along a stream reach impacted by fractures (fractured-zone) and downstream of the fractured hillslope (non- fractured zone) in Coal Creek, a Colorado River headwater stream affected by summer monsoons. During early summer, groundwater contributions from the fractured zone were high, but declined throughout the summer. Groundwater contributions from the non-fractured zone were constant throughout the summer and became proportionally more important later in the summer. We hypothesize that groundwater in the non-fractured zone is dominantly sourced from a high-storage alluvial fan at the base of a tributary that is connected to Coal Creek throughout the summer and provides consistent groundwater influx. Water isotope data revealed that Coal Creek responds quickly to incoming precipitation early in the summer, and summer precipitation becomes more important for streamflow generation later in the summer. We quantified the change in catchment dynamic storage and found it negatively related to stream water isotope values, and positively related to modeled groundwater discharge and the ratio of fractured zone to non-fractured zone groundwater. We interpret these relationships as declining hydrologic connectivity throughout the summer leading to late summer streamflow supported predominantly by shallow flow paths, with variable response to drying from geologic features based on their storage. As groundwater becomes more important for sustaining summer flows, quantifying local geologic controls on groundwater inputs and their response to variable moisture conditions may become critical for accurate predictions of streamflow. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. Free, publicly-accessible full text available March 1, 2025
  7. Biogeochemical properties of soils play a crucial role in soil and stream chemistry throughout a watershed. How water interacts with soils during subsurface flow can have impacts on water quality, thus, it is fundamental to understand where and how certain soil water chemical processes occur within a catchment. In this study, ~200 soil samples were evaluated throughout a small catchment in the Front Range of Colorado, USA to examine spatial and vertical patterns in major soil solutes among different landscape units: riparian areas, alluvial/colluvial fans, and steep hillslopes. Solutes were extracted from the soil samples in the laboratory and analyzed for major cation (Li, K, Mg, Br, and Ca) and anion (F, Cl, NO 2 , NO 3 , PO 4 , and SO 4 ) concentrations using ion chromatography. Concentrations of most solutes were greater in near surface soils (10 cm) than in deeper soils (100 cm) across all landscape units, except for F which increased with depth, suggestive of surface accumulation processes such as dust deposition or enrichment due to biotic cycling. Potassium had the highest variation between depths, ranging from 1.04 mg/l (100 cm) to 3.13 mg/l (10 cm) sampled from riparian landscape units. Nearly every solute was found to be enriched in riparian areas where vegetation was visibly denser, with higher mean concentrations than the hillslopes and fans, except for NO 3 which had higher concentrations in the fans. Br, NO 2 , and PO 4 concentrations were often below the detectable limit, and Li and Na were not variable between depths or landscape units. Ratioed stream water concentrations (K:Na, Ca:Mg, and NO 3 :Cl) vs. discharge relationships compared to the soil solute ratios indicated a hydraulic disconnection between the shallow soils (<100 cm) and the stream. Based on the comparisons among depths and landscape units, our findings suggest that K, Ca, F, and NO 3 solutes may serve as valuable tracers to identify subsurface flowpaths as they are distinct among landscape units and depth within this catchment. However, interflow and/or shallow groundwater flow likely have little direct connection to streamflow generation. 
    more » « less