skip to main content


Search for: All records

Award ID contains: 2013461

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Satellite‐based Fire radiative power (FRP) retrievals are used to track wildfire activity but are sometimes not possible or have large uncertainties. Here, we show that weather radar products including composite and base reflectivity and equivalent rainfall integrated in the vicinity of the fires show strong correlation with hourly FRP for multiple fires during 2019–2020. Correlation decreases when radar beams are blocked by topography and when there is significant ground clutter (GC) and anomalous propagation (AP). GC/AP can be effectively removed using a machine learning classifier trained with radar retrieved correlation coefficient, velocity, and spectrum width. We find a power‐law best describes the relationship between radar products and FRP for multiple fires combined (0.67–0.76 R2). Radar‐based FRP estimates can be used to fill gaps in satellite FRP created by cloud cover and show great potential to overcome satellite FRP biases occurring during extreme fire events.

     
    more » « less
  2. Abstract

    Predicting the evolution of burned area, smoke emissions, and energy release from wildfires is crucial to air quality forecasting and emergency response planning yet has long posed a significant scientific challenge. Here we compare predictions of burned area and fire radiative power from the coupled weather/fire‐spread model WRF‐Fire (Weather and Research Forecasting Tool with fire code), against simpler methods typically used in air quality forecasts. We choose the 2019 Williams Flats Fire as our test case due to a wealth of observations and ignite the fire on different days and under different configurations. Using a novel re‐gridding scheme, we compare WRF‐Fire's heat output to geostationary satellite data at 1‐hr temporal resolution. We also evaluate WRF‐Fire's time‐resolved burned area against high‐resolution imaging from the National Infrared Operations aircraft data. Results indicate that for this study, accounting for containment efforts in WRF‐Fire simulations makes the biggest difference in achieving accurate results for daily burned area predictions. When incorporating novel containment line inputs, fuel density increases, and fuel moisture observations into the model, the error in average daily burned area is 30% lower than persistence forecasting over a 5‐day forecast. Prescribed diurnal cycles and those resolved by WRF‐Fire simulations show a phase offset of at least an hour ahead of observations, likely indicating the need for dynamic fuel moisture schemes. This work shows that with proper configuration and input data, coupled weather/fire‐spread modeling has the potential to improve smoke emission forecasts.

     
    more » « less
  3. Abstract

    Injections of wildfire smoke plumes into the free troposphere impact air quality, yet model forecasts of injections are poor. Here, we use aircraft observations obtained during the 2019 western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise parameterization in two atmospheric chemistry-transport models (WRF-Chem and HRRR-Smoke). Observations show that smoke injections into the free troposphere occur in 35% of plumes, whereas the models forecast 59–95% indicating false injections in the simulations. False injections were associated with both models overestimating fire heat flux and terrain height, and with WRF-Chem underestimating planetary boundary layer height. We estimate that the radiant fraction of heat flux is 0.5 to 25 times larger in models than in observations, depending on fuel type. Model performance was substantially improved by using observed heat flux and boundary layer heights, confirming that models need accurate heat fluxes and boundary layer heights to correctly forecast plume injections.

     
    more » « less
  4. Abstract

    Wildfire emissions are a key contributor of carbonaceous aerosols and trace gases to the atmosphere. Induced by buoyant lifting, smoke plumes can be injected into the free troposphere and lower stratosphere, which by consequence significantly affects the magnitude and distance of their influences on air quality and radiation budget. However, the vertical allocation of emissions when smoke escapes the planetary boundary layer (PBL) and the mechanism modulating it remain unclear. We present an inverse modeling framework to estimate the wildfire emissions, with their temporal and vertical evolution being constrained by assimilating aerosol extinction profiles observed from the airborne Differential Absorption Lidar‐High Spectral Resolution Lidar during the Fire Influence on Regional to Global Environments and Air Quality field campaign. Three fire events in the western U.S., which exhibit free‐tropospheric injections are examined. The constrained smoke emissions indicate considerably larger fractions of smoke injected above the PBL (f>PBL, 80%–94%) versus the column total, compared to those estimated by the WRF‐Chem model using the default plume rise option (12%–52%). The updated emission profiles yield improvements for the simulated vertical structures of the downwind transported smoke, but limited refinement of regional smoke aerosol optical depth distributions due to the spatiotemporal coverage of flight observations. These results highlight the significance of improving vertical allocation of fire emissions on advancing the modeling and forecasting of the environmental impacts of smoke.

     
    more » « less
  5. The vertical distribution of wildfire smoke aerosols is important in determining its environmental impacts but existing observations of smoke heights generally do not possess the temporal resolution required to fully resolve the diurnal behavior of wildfire smoke injection. We use Weather Surveillance Radar‐1988 Doppler (WSR‐88D) dual polarization data to estimate injection heights of Biomass Burning Debris (BBD) generated by fires. We detect BBD as a surrogate for smoke aerosols, which are often collocated with BBD near the fire but are not within the size range detectable by these radars. Injection heights of BBD are derived for 2–10 August 2019, using WSR‐88D reflectivity (Z ≥ 10 dBZ) and dual polarization correlation coefficients (0.2 < C.C < 0.9) to study the Williams Flats fire. Results show the expected diurnal cycles with maximum injection heights present during the late afternoon period when the fire's intensity and convective mixing are maximized. WSR‐88D and airborne lidar injection height comparisons reveal that this method is sensitive to outliers and generally overpredicts maximum heights by 40%, though mean and median heights are better captured (<20% mean error). WSR‐88D heights between the 75th and 90th percentile seem to accurately represent the maximum heights, with the exception of heights estimated during the occurrence of a pyro‐cumulonimbus. Location specific mapping of WSR‐88D and lidar injection heights reveal that they diverge further away from the fire as expected due to BBD settling. Most importantly, WSR‐88D‐derived injection height estimates provide near continuous smoke height information, allowing for the study of diurnal variability of smoke injections.

     
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  6. Satellite remote sensing of aerosol optical depth (AOD) is essential for detection, characterization, and forecasting of wildfire smoke. In this work, we evaluate the AOD (550 nm) retrievals during the extreme wildfire events over the western U.S. in September 2020. Three products are analyzed, including the Moderate-resolution Imaging Spectroradiometers (MODIS) Multi-Angle Implementation of Atmospheric Correction (MAIAC) product collections C6.0 and C6.1, and the NOAA-20 Visible Infrared Imaging Radiometer (VIIRS) AOD from the NOAA Enterprise Processing System (EPS) algorithm. Compared with the Aerosol Robotic Network (AERONET) data, all three products show strong linear correlations with MAIAC C6.1 and VIIRS presenting overall low bias (<0.06). The accuracy of MAIAC C6.1 is found to be substantially improved with respect to MAIAC C6.0 that drastically underestimated AOD over thick smoke, which validates the effectiveness of updates made in MAIAC C6.1 in terms of an improved representation of smoke aerosol optical properties. VIIRS AOD exhibits comparable uncertainty with MAIAC C6.1 with a slight tendency of increased positive bias over the AERONET AOD range of 0.5–3.0. Averaging coincident retrievals from MAIAC C6.1 and VIIRS provides a lower root mean square error and higher correlation than for the individual products, motivating the benefit of blending these datasets. MAIAC C6.1 and VIIRS are further compared to provide insights on their retrieval strategy. When gridded at 0.1° resolution, MAIAC C6.1 and VIIRS provide similar monthly AOD distribution patterns and the latter exhibits a slightly higher domain average. On daily scale, over thick plumes near fire sources, MAIAC C6.1 reports more valid retrievals where VIIRS tends to have retrievals designated as low or medium quality, which tends to be due to internal quality checks. Over transported smoke near scattered clouds, VIIRS provides better retrieval coverage than MAIAC C6.1 owing to its higher spatial resolution, pixel-level processing, and less strict cloud masking. These results can be used as a guide for applications of satellite AOD retrievals during wildfire events and provide insights on future improvement of retrieval algorithms under heavy smoke conditions. 
    more » « less
  7. Abstract. Wildfire smoke is one of the most significant concerns ofhuman and environmental health, associated with its substantial impacts onair quality, weather, and climate. However, biomass burning emissions andsmoke remain among the largest sources of uncertainties in air qualityforecasts. In this study, we evaluate the smoke emissions and plumeforecasts from 12 state-of-the-art air quality forecasting systemsduring the Williams Flats fire in Washington State, US, August 2019, whichwas intensively observed during the Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Model forecasts withlead times within 1 d are intercompared under the same framework basedon observations from multiple platforms to reveal their performanceregarding fire emissions, aerosol optical depth (AOD), surface PM2.5,plume injection, and surface PM2.5 to AOD ratio. The comparison ofsmoke organic carbon (OC) emissions suggests a large range of daily totalsamong the models, with a factor of 20 to 50. Limited representations of thediurnal patterns and day-to-day variations of emissions highlight the needto incorporate new methodologies to predict the temporal evolution andreduce uncertainty of smoke emission estimates. The evaluation of smoke AOD(sAOD) forecasts suggests overall underpredictions in both the magnitude andsmoke plume area for nearly all models, although the high-resolution modelshave a better representation of the fine-scale structures of smoke plumes.The models driven by fire radiativepower (FRP)-based fire emissions or assimilating satellite AODdata generally outperform the others. Additionally, limitations of thepersistence assumption used when predicting smoke emissions are revealed bysubstantial underpredictions of sAOD on 8 August 2019, mainly over thetransported smoke plumes, owing to the underestimated emissions on7 August. In contrast, the surface smoke PM2.5 (sPM2.5) forecastsshow both positive and negative overall biases for these models, with mostmembers presenting more considerable diurnal variations of sPM2.5.Overpredictions of sPM2.5 are found for the models driven by FRP-basedemissions during nighttime, suggesting the necessity to improve verticalemission allocation within and above the planetary boundary layer (PBL).Smoke injection heights are further evaluated using the NASA LangleyResearch Center's Differential Absorption High Spectral Resolution Lidar(DIAL-HSRL) data collected during the flight observations. As the firebecame stronger over 3–8 August, the plume height became deeper, with aday-to-day range of about 2–9 km a.g.l. However, narrower ranges arefound for all models, with a tendency of overpredicting the plume heights forthe shallower injection transects and underpredicting for the days showingdeeper injections. The misrepresented plume injection heights lead toinaccurate vertical plume allocations along the transects corresponding totransported smoke that is 1 d old. Discrepancies in model performance forsurface PM2.5 and AOD are further suggested by the evaluation of theirratio, which cannot be compensated for by solely adjusting the smoke emissionsbut are more attributable to model representations of plume injections,besides other possible factors including the evolution of PBL depths andaerosol optical property assumptions. By consolidating multiple forecastsystems, these results provide strategic insight on pathways to improvesmoke forecasts. 
    more » « less