skip to main content

Search for: All records

Award ID contains: 2013824

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available December 22, 2023
  3. Free, publicly-accessible full text available December 6, 2023
  4. Free, publicly-accessible full text available December 6, 2023
  5. Silva, Alexandra ; Leino, K. Rustan (Ed.)
    Neural Networks (NNs) have increasingly apparent safety implications commensurate with their proliferation in real-world applications: both unanticipated as well as adversarial misclassifications can result in fatal outcomes. As a consequence, techniques of formal verification have been recognized as crucial to the design and deployment of safe NNs. In this paper, we introduce a new approach to formally verify the most commonly considered safety specifications for ReLU NNs -- i.e. polytopic specifications on the input and output of the network. Like some other approaches, ours uses a relaxed convex program to mitigate the combinatorial complexity of the problem. However, unique in our approach is the way we use a convex solver not only as a linear feasibility checker, but also as a means of penalizing the amount of relaxation allowed in solutions. In particular, we encode each ReLU by means of the usual linear constraints, and combine this with a convex objective function that penalizes the discrepancy between the output of each neuron and its relaxation. This convex function is further structured to force the largest relaxations to appear closest to the input layer; this provides the further benefit that the most ``problematic'' neurons are conditioned as early as possible, whenmore »conditioning layer by layer. This paradigm can be leveraged to create a verification algorithm that is not only faster in general than competing approaches, but is also able to verify considerably more safety properties; we evaluated PEREGRiNN on a standard MNIST robustness verification suite to substantiate these claims.« less