skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2015226

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Yang, Junyuan (Ed.)
    In this work, we develop a new set of Bayesian models to perform registration of real-valued functions. A Gaussian process prior is assigned to the parameter space of time warping functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the posterior distribution. While the proposed model can be defined on the infinite-dimensional function space in theory, dimension reduction is needed in practice because one cannot store an infinite-dimensional function on the computer. Existing Bayesian models often rely on some pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid size or the number of basis functions used to represent a functional object. In comparison, the new models in this paper randomize the truncation rule. Benefits of the new models include the ability to make inference on the smoothness of the functional parameters, a data-informative feature of the truncation rule, and the flexibility to control the amount of shape-alteration in the registration process. For instance, using both simulated and real data, we show that when the observed functions exhibit more local features, the posterior distribution on the warping functions automatically concentrates on a larger number of basis functions. Supporting materials including code and data to perform registration and reproduce some of the results presented herein are available online. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024
  3. Free, publicly-accessible full text available July 3, 2024
  4. We consider the problem of classifying curves when they are observed only partially on their parameter domains. We propose computational methods for (i) completion of partially observed curves; (ii) assessment of completion variability through a nonparametric multiple imputation procedure; (iii) development of nearest neighbor classifiers compatible with the completion techniques. Our contributions are founded on exploiting the geometric notion of shape of a curve, defined as those aspects of a curve that remain unchanged under translations, rotations and reparameterizations. Explicit incorporation of shape information into the computational methods plays the dual role of limiting the set of all possible completions of a curve to those with similar shape while simultaneously enabling more efficient use of training data in the classifier through shape-informed neighborhoods. Our methods are then used for taxonomic classification of partially observed curves arising from images of fossilized Bovidae teeth, obtained from a novel anthropological application concerning paleoenvironmental reconstruction. 
    more » « less