skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian function registration with random truncation
In this work, we develop a new set of Bayesian models to perform registration of real-valued functions. A Gaussian process prior is assigned to the parameter space of time warping functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the posterior distribution. While the proposed model can be defined on the infinite-dimensional function space in theory, dimension reduction is needed in practice because one cannot store an infinite-dimensional function on the computer. Existing Bayesian models often rely on some pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid size or the number of basis functions used to represent a functional object. In comparison, the new models in this paper randomize the truncation rule. Benefits of the new models include the ability to make inference on the smoothness of the functional parameters, a data-informative feature of the truncation rule, and the flexibility to control the amount of shape-alteration in the registration process. For instance, using both simulated and real data, we show that when the observed functions exhibit more local features, the posterior distribution on the warping functions automatically concentrates on a larger number of basis functions. Supporting materials including code and data to perform registration and reproduce some of the results presented herein are available online.  more » « less
Award ID(s):
2015226 1740761 1839252
PAR ID:
10444823
Author(s) / Creator(s):
; ;
Editor(s):
Yang, Junyuan
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0287734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In many modern applications, discretely-observed data may be naturally understood as a set of functions. Functional data often exhibit two confounded sources of variability: amplitude (y-axis) and phase (x-axis). The extraction of amplitude and phase, a process known as registration, is essential in exploring the underlying structure of functional data in a variety of areas, from environmental monitoring to medical imaging. Critically, such data are often gathered sequentially with new functional observations arriving over time. Despite this, existing registration procedures do not sequentially update inference based on the new data, requiring model refitting. To address these challenges, we introduce a Bayesian framework for sequential registration of functional data, which updates statistical inference as new sets of functions are assimilated. This Bayesian model-based sequential learning approach utilizes sequential Monte Carlo sampling to recursively update the alignment of observed functions while accounting for associated uncertainty. Distributed computing significantly reduces computational cost relative to refitting the model using an iterative method such as Markov chain Monte Carlo on the full data. Simulation studies and comparisons reveal that the proposed approach performs well even when the target posterior distribution has a challenging structure. We apply the proposed method to three real datasets: (1) functions of annual drought intensity near Kaweah River in California, (2) annual sea surface salinity functions near Null Island, and (3) a sequence of repeated patterns in electrocardiogram signals. 
    more » « less
  2. null (Ed.)
    Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. 
    more » « less
  3. Abstract Multivariate functional data present theoretical and practical complications that are not found in univariate functional data. One of these is a situation where the component functions of multivariate functional data are positive and are subject to mutual time warping. That is, the component processes exhibit a common shape but are subject to systematic phase variation across their domains in addition to subject‐specific time warping, where each subject has its own internal clock. This motivates a novel model for multivariate functional data that connect such mutual time warping to a latent‐deformation‐based framework by exploiting a novel time‐warping separability assumption. This separability assumption allows for meaningful interpretation and dimension reduction. The resulting latent deformation model is shown to be well suited to represent commonly encountered functional vector data. The proposed approach combines a random amplitude factor for each component with population‐based registration across the components of a multivariate functional data vector and includes a latent population function, which corresponds to a common underlying trajectory. We propose estimators for all components of the model, enabling implementation of the proposed data‐based representation for multivariate functional data and downstream analyses such as Fréchet regression. Rates of convergence are established when curves are fully observed or observed with measurement error. The usefulness of the model, interpretations, and practical aspects are illustrated in simulations and with application to multivariate human growth curves and multivariate environmental pollution data. 
    more » « less
  4. Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions—the conditional denoising estimator—can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference. 
    more » « less
  5. Abstract Multivariate functional data are becoming ubiquitous with advances in modern technology and are substantially more complex than univariate functional data. We propose and study a novel model for multivariate functional data where the component processes are subject to mutual time warping. That is, the component processes exhibit a similar shape but are subject to systematic phase variation across their time domains. To address this previously unconsidered mode of warping, we propose new registration methodology that is based on a shift‐warping model. Our method differs from all existing registration methods for functional data in a fundamental way. Namely, instead of focusing on the traditional approach to warping, where one aims to recover individual‐specific registration, we focus on shift registration across the components of a multivariate functional data vector on a population‐wide level. Our proposed estimates for these shifts are identifiable, enjoy parametric rates of convergence, and often have intuitive physical interpretations, all in contrast to traditional curve‐specific registration approaches. We demonstrate the implementation and interpretation of the proposed method by applying our methodology to the Zürich Longitudinal Growth data and study its finite sample properties in simulations. 
    more » « less