skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2015466

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increased interest in ecosystem recovery and resilience has been driven by concerns over global change-induced shifts in forest disturbance regimes. In frequent-fire forests, catastrophic wind disturbances modify vegetation-fuels-fire feedbacks, and these alterations may shift species composition and stand structure to alternative states relative to pre-disturbance conditions. We established permanent inventory plots in a catastrophically wind-disturbed and fire-maintained Pinus palustris woodland in the Alabama Fall Line Hills to examine ecosystem recovery and model the successional and developmental trajectory of the stand through age 50 years. We found that sapling height was best explained by species. Species with the greatest mean heights likely utilized different regeneration mechanisms. The simulation model projected that at age 50 years, the stand would transition to be mixedwood and dominated by Quercus species, Pinus taeda, and P. palustris. The projected successional pathway is likely a function of residual stems that survived the catastrophic wind disturbance and modification of vegetation-fuels-fire feedbacks. Although silvicultural interventions will be required for this system to exhibit pre-disturbance species composition and structure, we contend that the ecosystem was still resilient to the catastrophic disturbance because similar silvicultural treatments were required to create and maintain the P. palustris woodland prior to the disturbance event. 
    more » « less