skip to main content


Title: Resilience of a Fire-Maintained Pinus palustris Woodland to Catastrophic Wind Disturbance: 10 Year Results
Increased interest in ecosystem recovery and resilience has been driven by concerns over global change-induced shifts in forest disturbance regimes. In frequent-fire forests, catastrophic wind disturbances modify vegetation-fuels-fire feedbacks, and these alterations may shift species composition and stand structure to alternative states relative to pre-disturbance conditions. We established permanent inventory plots in a catastrophically wind-disturbed and fire-maintained Pinus palustris woodland in the Alabama Fall Line Hills to examine ecosystem recovery and model the successional and developmental trajectory of the stand through age 50 years. We found that sapling height was best explained by species. Species with the greatest mean heights likely utilized different regeneration mechanisms. The simulation model projected that at age 50 years, the stand would transition to be mixedwood and dominated by Quercus species, Pinus taeda, and P. palustris. The projected successional pathway is likely a function of residual stems that survived the catastrophic wind disturbance and modification of vegetation-fuels-fire feedbacks. Although silvicultural interventions will be required for this system to exhibit pre-disturbance species composition and structure, we contend that the ecosystem was still resilient to the catastrophic disturbance because similar silvicultural treatments were required to create and maintain the P. palustris woodland prior to the disturbance event.  more » « less
Award ID(s):
2015466
NSF-PAR ID:
10312972
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Forests
Volume:
12
Issue:
8
ISSN:
1999-4907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information and material biological legacies that persist after catastrophic forest disturbance collectively constitute the ecological memory of the system and may strongly influence future stand development. Catastrophic disturbances often result in an influx of coarse woody debris (CWD), and this material legacy may provide beneficial microsites that affect successional and structural developmental pathways. We examined how microenvironmental characteristics influence the regeneration of woody plants in a subtropical woodland that experienced a large influx of CWD from a catastrophic wind disturbance. Specifically, we asked (1) what microenvironmental factors best explain woody plant density, richness, and height in the regeneration layer and (2) does woody plant density, richness, and height benefit from the large influx of CWD to a degree that competition dynamics and succession may be modified? Data were collected in a Pinus palustris woodland that had experienced an EF3 tornado and was subjected to a four-year prescribed fire rotation. We documented live woody plants <5 cm diameter at breast height, soil, and site characteristics and tested for differences in seedling and sapling density, species richness, and height in relation to CWD proximity. We used a random forest machine learning algorithm to examine the influence of microenvironmental conditions on the characteristics of woody plants in the regeneration layer. Woody plant density and species richness were not significantly different by proximity to CWD, but plants near CWD were slightly taller than plants away from CWD. The best predictors of woody plant density, richness, and height were abiotic site characteristics including slope gradient and azimuth, organic matter depth and weight, and soil water content. Results indicated that the regeneration of woody plants in this P. palustris woodland was not strongly influenced by the influx of CWD, but by other biological legacies such as existing root networks and soil characteristics. Our study highlights the need to consider ecological memory in forest management decision-making after catastrophic disturbance. Information and material legacies shape recovery patterns, but, depending on the system, some legacies will be more influential on successional and developmental pathways than others. 
    more » « less
  2. Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments. 
    more » « less
  3. Abstract

    Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi‐year measurements of vegetation dynamics and function (fluxes of CO2and H2O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50‐ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6‐year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%–94% along forest edges (0–200 m into the forest) and 36%–40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%–80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light‐use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.

     
    more » « less
  4. null (Ed.)
    Drought and warming increasingly are causing widespread tree die-offs and extreme wildfires. Forest managers are struggling to improve anticipatory forest management practices given more frequent, extensive, and severe wildfire and tree die-off events triggered by “hotter drought”—drought under warmer than historical conditions. Of even greater concern is the increasing probability of multi-year droughts, or “megadroughts”—persistent droughts that span years to decades, and that under a still-warming climate, will also be hotter than historical norms. Megadroughts under warmer temperatures are disconcerting because of their potential to trigger more severe forest die-off, fire cycles, pathogens, and insect outbreaks. In this Perspective, we identify potential anticipatory and/or concurrent options for non-timber forest management actions under megadrought, which by necessity are focused more at finer spatial scales such as the stand level using higher-intensity management. These management actions build on silvicultural practices focused on growth and yield (but not harvest). Current management options that can be focused at finer scales include key silvicultural practices: selective thinning; use of carefully selected forward-thinking seed mixes; site contouring; vegetation and pest management; soil erosion control; and fire management. For the extreme challenges posed by megadroughts, management will necessarily focus even more on finer-scale, higher-intensity actions for priority locations such as fostering stand refugia; assisted stand recovery via soil amendments; enhanced root development; deep soil water retention; and shallow water impoundments. Drought-induced forest die-off from megadrought likely will lead to fundamental changes in the structure, function, and composition of forest stands and the ecosystem services they provide. 
    more » « less
  5. null (Ed.)
    Wildfire is a ubiquitous disturbance agent in subalpine forests in western North America. Lodgepole pine ( Pinus contorta var. latifolia), a dominant tree species in these forests, is largely resilient to high-severity fires, but this resilience may be compromised under future scenarios of altered climate and fire activity. We investigated fire occurrence and post-fire vegetation change in a lodgepole pine forest over the past 2500 years to understand ecosystem responses to variability in wildfire and climate. We reconstructed vegetation composition from pollen preserved in a sediment core from Chickaree Lake, Colorado, USA (1.5-ha lake), in Rocky Mountain National Park, and compared vegetation change to an existing fire history record. Pollen samples ( n = 52) were analyzed to characterize millennial-scale and short-term (decadal-scale) changes in vegetation associated with multiple high-severity fire events. Pollen assemblages were dominated by Pinus throughout the record, reflecting the persistence of lodgepole pine. Wildfires resulted in significant declines in Pinus pollen percentages, but pollen assemblages returned to pre-fire conditions after 18 fire events, within c.75 years. The primary broad-scale change was an increase in Picea, Artemisia, Rosaceae, and Arceuthobium pollen types, around 1155 calibrated years before present. The timing of this change is coincident with changes in regional pollen records, and a shift toward wetter winter conditions identified from regional paleoclimate records. Our results indicate the overall stability of vegetation in Rocky Mountain lodgepole pine forests during climate changes and repeated high-severity fires. Contemporary deviations from this pattern of resilience could indicate future recovery challenges in these ecosystems. 
    more » « less