Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cloud seeding has been widely used for enhancing wintertime snowfall, particularly to augment water resources. This study examines microphysical responses to airborne glaciogenic seeding with silver iodide (AgI) during a specific case from the Seeded and Natural Orographic Wintertime Clouds: Idaho Experiment (SNOWIE) on 11 January 2017. Ground-based and airborne remote sensing and in situ measurements were employed to assess the impact of cloud seeding on cloud properties and precipitation formation. On 11th January, AgI propagated downwind along prevailing winds, and any potential ice and snow particles created from it were identified by ground-based radar as zigzag lines of enhanced reflectivity compared to background reflectivity. As the aircraft flew several times through these seeded clouds, microphysical properties within seeded clouds can be compared to those observed in unseeded clouds. The results indicate that seeded clouds exhibited significantly enhanced ice water content (IWC; reaching up to 0.20 g m−3) and precipitating-size (>400μm) ice particle concentrations (>7 L−1) relative to unseeded clouds. Additionally, seeded clouds exhibited a 30% decrease in the mean liquid water content (LWC) and cloud droplet concentrations, indicating efficient glaciation processes influenced by AgI. Precipitating snow development in seeded clouds occurred within 15–40 min following AgI release, marked by a transition from mixed-phase clouds with abundant supercooled liquid water (SLW) to ice clouds, with lidar-measured linear depolarization ratio (LDR) increasing to >0.3. These findings underscore the effectiveness of cloud seeding in enhancing snowfall by facilitating ice initiation and growth. Significance StatementThis study investigates the microphysical response of wintertime orographic clouds to airborne glaciogenic seeding, highlighting its role in enhancing precipitation. By introducing silver iodide (AgI) into clouds with supercooled liquid water, the seeding process facilitates ice particle formation, leading to increased snowfall. Through a detailed analysis of microphysical conditions using advanced in situ and remote sensing instruments, the study reveals enhanced ice water content and efficient conversion of liquid water to ice in seeded clouds. These findings provide critical insights into cloud-seeding efficacy, particularly in regions with abundant supercooled liquid water, offering a scientific foundation for enhancing snowpack in water-scarce mountainous areas.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Shear and buoyancy gradients, often observed in midlatitude baroclinic and orographic winter storms, produce discrete layers of turbulence. These turbulent layers modify the distribution of supercooled liquid water (SLW), whose presence enables hydrometeors to grow to precipitation sizes faster than through vapor-ice deposition alone. Both the Wegener–Bergeron–Findeisen process and riming require SLW—heterogeneously distributed in response to the dynamic forcings at all superposed scales. The University of Wyoming W-band cloud radar Doppler spectrum width characterizes the air motion turbulence intensity in mixed-phase layer clouds after avoiding fall speed dominated regions through comparison to coarser radar turbulence metrics. Embedded layers of turbulent air motion are compared to quiescent cloud regions in either/both the upwind and downwind directions. Median radar reflectivity profiles characterize the vertical growth of hydrometeors in the vicinity of identified layers, and differences in these vertical reflectivity gradients comparing turbulent to nonturbulent regions quantify enhanced hydrometeor growth over the layer. Over the entirety of the Seeded and Natural Orographic Wintertime Clouds—the Idaho Experiment, this parameter demonstrates a statistically significant increase, −13.6 dBZekm−1(from −1.7 to −24.5, 95% computed confidence), in radar reflectivity echo power with distance downward for embedded turbulent layers compared to quiescent cloud nearby. The increased vertical particle growth rate for turbulent layers appears to result from spatially heterogeneous phase partitioning, increased SLW mass and extent, and enhanced collision/collection rates in these layers. These first two conditions are examined individually where turbulent layers or fall streaks are sampled in situ, while the latter agrees with modeling results but can only be inferred herein. Significance StatementTurbulent mixing in mixed-phase clouds is understood to enhance cloud hydrometeor growth. This study quantifies these effects on observed airborne W-band radar reflectivity over an entire field campaign targeting midlatitude winter storms and calls into question whether this linkage is diagnosed properly if at all in forecast and bulk microphysical models with coarse (greater than 500 m) grid spacing or vertical resolution.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract It is not uncommon for layers within the warm conveyor belt in a frontal system to become potentially unstable, releasing elevated convection. The present study examines this destabilization process over complex terrain, and resulting precipitation, with a focus on the surface coupling, orographic ascent, and the initiation and evolution of convective cells. This study uses detailed observations combined with numerical modeling of a baroclinic system passing over the Idaho Central Mountains in the United States on 7 February 2017. The data were collected as part of the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Specifically, observations from a ground-based scanning X-band radar and an airborne profiling Doppler W-band radar along ~100 km long flight tracks aligned with the wind describe the development and evolution of convective cells above shallow stratiform orographic clouds. Convection-permitting numerical simulations of this event, with an inner domain grid resolution of 0.9 km, capture the emergence and vertical structure of the convective cells. Therefore, they are used to describe the advection of warm, moist air over a retreating warm front, cold air pooling within the Snake River Basin and adjacent valleys, destabilization in a moist layer above this shallow stable layer, and instability release in orographic gravity wave updrafts. In this case, the convective cells topped out near 6 km ASL, and the resulting precipitation fell mostly leeward of the ridge where convection was triggered, on account of strong cross-barrier flow. Sequential convection initiation over terrain ridges and rapid downwind transport led to banded precipitation structures.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Abstract Cloud seeding of wintertime orographic clouds in the western United States has been attempted to enhance snow production and snowpack. Due to the scarcity of long-term, high-resolution cloud and precipitation observations over complex terrain, few studies have explored variations in orographic snowfall amounts by comparing environmental conditions and cloud characteristics with surface snowfall distribution and quantity. This study analyzes the environmental conditions and cloud characteristics in relation to surface snowfall patterns for the 24 snowfall events observed during the 2017 Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The investigation aims to understand: 1) What is the influence, if any, of wind, turbulence, and updraft strength on snowfall amounts, rates, and distribution? 2) What is the relationship, if any, of cloud properties and precipitation-forming effectiveness? and 3) Can cloud seeding modify controlling cloud characteristics sufficiently to increase precipitation in otherwise inefficient orographic clouds? The analysis over a 7200-km2observational domain revealed that the accumulated liquid-equivalent snowfall was <0.9 × 107m3and snowfall rates were <0.45 mm h−1for about half of the events. Low snowfall events were characterized by cloud-top temperatures >−20°C, fewer larger droplets, higher liquid water content, and lower ice water content compared to the other events. Cases with minimal background natural snowfall also permitted radar observation of seeding lines. In these cases, cloud seeding was mainly responsible for snowfall. The amount of silver iodide (AgI) released during cloud seeding did not correlate well with snowfall amount and rate. Significance StatementThis study illustrates the complexities of estimating snowfall in wintertime orographic clouds, underscoring the frequent inefficiency of these clouds in generating snowfall—a pivotal concern for regions dependent on snowpack for water resources. By analyzing environmental and cloud characteristics against snowfall patterns during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE), the research provides critical insights into the complexities of precipitation formation. The findings, particularly on the impact of cloud seeding in enhancing snowfall under specific conditions, contribute significantly to our understanding of weather modification techniques. This research not only is vital for advancing scientific knowledge in understanding wintertime mountain cloud systems but also holds profound implications for water resource management, agriculture, and disaster preparedness in snow-dependent regions.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Snowpack melting is a crucial water resource for local ecosystems, agriculture, and hydropower in the Intermountain West of the United States. Glaciogenic seeding, a method widely used in mountain regions to enhance precipitation, has been subject to numerous field studies aiming to understand and validate this mechanism. However, investigating precipitation distribution and amounts in mountainous areas is complicated due to the intricate interplay of synoptic circulation patterns and local complex topography. These interactions significantly influence microphysical processes, ultimately affecting the amount and distribution of surface precipitation. To address these challenges, this study leverages Weather Research and Forecasting (WRF) Model simulations, providing high-resolution (900 m), hourly data, spanning the Payette region of Idaho from January to March 2017. We applied the self-organizing map approach to categorize the most representative synoptic circulation patterns and conducted a multiscale analysis to explore their associated environmental conditions and microphysical processes, aiming to assess the cloud seeding potential. The analysis identified four primary synoptic patterns: cold zonal flow (CZF), cold southwesterly flow (CSWF), warm zonal flow (WZF), and warm southwesterly flow (WSWF), constituting 21.3%, 23.1%, 30.0%, and 25.5%, respectively. CSWF and WSWF demonstrated efficiency in generating natural precipitation. These patterns were characterized by abundant supercooled liquid water (SLW) and ice particles, facilitating cloud droplet growth through seeder–feeder processes. On the other hand, CZF exhibited the least SLW and limited potential for cloud seeding, while WZF displayed a lower ice water content but substantial SLW in the diffusion/dendritic growth layer, suggesting a favorable scenario for cloud seeding. Significance StatementUnderstanding snowfall amounts and distribution in the mountains and how it is linked to topography, synoptic flow, and microphysical processes will help in the development of effective strategies for cloud seeding operations, managing runoff, reservoir, and mitigating flood risks, garnering substantial interest from stakeholders and the government agencies.more » « less
-
Abstract During the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE) field campaign, cloud-top generating cells were frequently observed in the very high-resolution W-band airborne cloud radar data. This study examines multiple flight segments from three SNOWIE cases that exhibited cloud-top generating cells structures, focusing on the in situ measurements inside and outside these cells to characterize the microphysics of these cells. The observed generating cells in these three cases occurred in cloud tops of −15° to −30°C, with and without overlying cloud layers, but always with shallow layers of atmospheric instability observed at cloud top. The results also indicate that liquid water content, vertical velocity, and drizzle and ice crystal concentrations are greater inside the generating cells compared to the adjacent portions of the cloud. The generating cells were predominantly <500 m in horizontal width and frequently exhibited drizzle drops coexisting with ice. The particle imagery indicates that ice particle habits included plates, columns, and rimed and irregular crystals, likely formed via primary ice nucleation mechanisms. Understanding the sources of natural ice formation is important to understanding precipitation formation in winter orographic clouds, and is especially relevant for clouds that may be targeted for glaciogenic cloud seeding as well as to improve model representation of these clouds. Significance StatementThis study presents the characteristics of cloud-top generating cells in winter orographic clouds, and documents that fine-scale generating cells are ubiquitous in clouds over complex terrain in addition to having been observed in other types of clouds. The generating cells exhibited enhanced concentrations of larger drizzle and ice particles, which suggests the environments of these fine-scale features promote ice formation and growth. The source of ice formation in winter clouds is critical to understanding and modeling the precipitation formation process. Given the ubiquity of cloud-top generating cells in many types of clouds around the world, this study further motivates the need to investigate methods for representing subgrid-scale environments to improve ice formation in numerical models.more » « less
-
Abstract High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases. Significance StatementDoppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies.more » « less
-
Abstract This paper examines the controls on supercooled liquid water content (SLWC) and drop number concentrations (Nt,CDP) over the Payette River basin during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) campaign. During SNOWIE, 27.4% of 1-Hz in situ cloud droplet probe samples were in an environment containing supercooled liquid water (SLW). The interquartile range of SLWC, when present, was found to be 0.02–0.18 g m−3and 13.3–37.2 cm−3forNt,CDP, with the most extreme values reaching 0.40–1.75 g m−3and 150–320 cm−3in isolated regions of convection and strong shear-induced turbulence. SLWC andNt,CDPdistributions are shown to be directly related to cloud-top temperature and ice particle concentrations, consistent with past research over other mountain ranges. Two classes of vertical motions were analyzed as potential controls on SLWC andNt,CDP, the first forced by the orography and fixed in space relative to the topography (stationary waves) and the second transient, triggered by vertical shear and instability within passing synoptic-scale cyclones. SLWC occurrence and magnitudes, andNt,CDPassociated with fixed updrafts were found to be normally distributed about ridgelines when SLW was present. SLW was more likely to form at low altitudes near the terrain slope associated with fixed waves due to higher mixing ratios and larger vertical air parcel displacements at low altitudes. When considering transient updrafts, SLWC andNt,CDPappear more uniformly distributed over the flight track with little discernable terrain dependence as a result of time and spatially varying updrafts associated with passing weather systems. The implications for cloud seeding over the basin are discussed.more » « less
-
Abstract Kelvin–Helmholtz instability (KH) waves have been broadly shown to affect the growth of hydrometeors within a region of falling precipitation, but formation and growth from KH waves at cloud top needs further attention. Here, we present detailed observations of cloud-top KH waves that produced a snow plume that extended to the surface. Airborne transects of cloud radar aligned with range height indicator scans from ground-based precipitation radar track the progression and intensity of the KH wave kinetics and precipitation. In situ cloud probes and surface disdrometer measurements are used to quantify the impact of the snow plume on the composition of an underlying supercooled liquid water (SLW) cloud and the snowfall observed at the surface. KH wavelengths of 1.5 km consisted of ∼750-m-wide up- and downdrafts. A distinct fluctus region appeared as a wave-breaking cloud top where the fastest updraft was observed to exceed 5 m s−1. Relatively weaker updrafts of 0.5–1.5 m s−1beneath the fluctus and partially overlapping the dendritic growth zone were associated with steep gradients in reflectivity of −5 to 20 dBZein as little as 500-m depths due to rapid growth of pristine planar ice crystals. The falling snow removed ∼80% of the SLW content from the underlying cloud and led to a twofold increase in surface liquid equivalent snowfall rate from 0.6 to 1.3 mm h−1. This paper presents the first known study of cloud-top KH waves producing snowfall with observations of increased snowfall rates at the surface.more » « less
-
Abstract As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.more » « less
An official website of the United States government
