skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2016240

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a generic compiler that can convert any zero-knowledge (ZK) proof for SIMD circuits to general circuits efficiently, and an extension that can preserve the space complexity of the proof systems. Our compiler can immediately produce new results improving upon state of the art.By plugging in our compiler to Antman, an interactive sublinear-communication protocol, we improve the overall communication complexity for general circuits from$$\mathcal {O}(C^{3/4})$$ O ( C 3 / 4 ) to$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) . Our implementation shows that for a circuit of size$$2^{27}$$ 2 27 , it achieves up to$$83.6\times $$ 83.6 × improvement on communication compared to the state-of-the-art implementation. Its end-to-end running time is at least$$70\%$$ 70 % faster in a 10Mbps network.Using the recent results on compressed$$\varSigma $$ Σ -protocol theory, we obtain a discrete-log-based constant-round zero-knowledge argument with$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) communication and common random string length, improving over the state of the art that has linear-size common random string and requires heavier computation.We improve the communication of a designatedn-verifier zero-knowledge proof from$$\mathcal {O}(nC/B+n^2B^2)$$ O ( n C / B + n 2 B 2 ) to$$\mathcal {O}(nC/B+n^2)$$ O ( n C / B + n 2 ) .To demonstrate the scalability of our compilers, we were able to extract a commit-and-prove SIMD ZK from Ligero and cast it in our framework. We also give one instantiation derived from LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our methodology. 
    more » « less
  2. Data sharing opportunities are everywhere, but privacy concerns and regulatory constraints often prevent organizations from fully realizing their value. A private data federation tackles this challenge by enabling secure querying across multiple privately held data stores where only the final results are revealed to anyone. We investigate optimizing relational queries evaluated under secure multiparty computation, which provides strong privacy guarantees but at a significant performance cost. We present Alchemy, a query optimization framework that generalizes conventional optimization techniques to secure query processing over circuits, the most popular paradigm for cryptographic computation protocols. We build atop VaultDB, our open-source framework for oblivious query processing. Alchemy leverages schema information and the query's structure to minimize circuit complexity while maintaining strong security guarantees. Our optimization framework builds incrementally through four synergistic phases: (1) rewrite rules to minimize circuits; (2) cardinality bounding with schema metadata; (3) bushy plan generation; and (4) physical planning with our fine-grained cost model for operator selection and sort reuse. While our work focuses on MPC, our optimization techniques generalize naturally to other secure computation settings. We validated our approach on TPC-H, demonstrating speedups of up to 2 OOM. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Xiao, Xiaokui (Ed.)
    Individuals and organizations are accumulating data at an unprecedented rate owing to the advent of inexpensive cloud computing. Data owners are increasingly turning to secure and privacy-preserving collaborative analytics to maximize the value of their records. In this paper, we will survey the state-of-the- art of this growing area. We will describe how researchers are bringing security and privacy-enhancing technologies, such as differential privacy, secure multiparty computation, and zero-knowledge proofs, into the query lifecycle. We also touch upon some of the challenges and opportunities associated with deploying these technologies in the field. 
    more » « less
  4. Individuals and organizations are using databases to store personal information at an unprecedented rate. This creates a quandary for data providers. They are responsible for protecting the privacy of individuals described in their database. On the other hand, data providers are sometimes required to provide statistics about their data instead of sharing it wholesale with strong assurances that these answers are correct and complete such as in regulatory filings for the US SEC and other goverment organizations. We introduce a system,ZKSQL, that provides authenticated answers to ad-hoc SQL queries with zero-knowledge proofs. Its proofs show that the answers are correct and sound with respect to the database's contents and they do not divulge any information about its input records. This system constructs proofs over the steps in a query's evaluation and it accelerates this process with authenticated set operations. We validate the efficiency of this approach over a suite of TPC-H queries and our results show that ZKSQL achieves two orders of magnitude speedup over the baseline. 
    more » « less