skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2016356

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate rapid four-wave mixing (FWM) imaging to assess the quality of emerging optical and electronic materials. We show that FWM intensity, dephasing times, and excited state lifetimes are accurate sample quality indicators. 
    more » « less
  2. We demonstrate rapid imaging based on four-wave mixing (FWM) by assessing the quality of advanced materials through measurement of their nonlinear response, exciton dephasing, and exciton lifetimes. We use a WSe2monolayer grown by chemical vapor deposition as a canonical example to demonstrate these capabilities. By comparison, we show that extracting material parameters such as FWM intensity, dephasing times, excited state lifetimes, and distribution of dark/localized states allows for a more accurate assessment of the quality of a sample than current prevalent techniques, including white light microscopy and linear micro-reflectance spectroscopy. We further discuss future improvements of the ultrafast FWM techniques by modeling the robustness of exponential decay fits to different spacing of the sampling points. Employing ultrafast nonlinear imaging in real-time at room temperature bears the potential for rapid in-situ sample characterization of advanced materials and beyond.

     
    more » « less
  3. We demonstrate coherent coupling between excitons in a MoSe2/WSe2 heterostructure, as well as rapid interlayer electron and hole transfer. We visualize the spatial homogeneity of the coupling in the presence of significant sample inhomogeneities. 
    more » « less
  4. Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe 2 monolayer and identify both promising and unfavorable areas for quantum information applications. We, furthermore, apply the same technique to a MoSe 2 /WSe 2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond. 
    more » « less
  5. We demonstrate coherent coupling between excitons in a MoSe2/WSe2 heterostructure, as well as rapid interlayer electron and hole transfer. We visualize the spatial homogeneity of the coupling in the presence of significant sample inhomogeneities 
    more » « less