Abstract The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics. 
                        more » 
                        « less   
                    
                            
                            Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides
                        
                    
    
            Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe 2 monolayer and identify both promising and unfavorable areas for quantum information applications. We, furthermore, apply the same technique to a MoSe 2 /WSe 2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2016356
- PAR ID:
- 10335764
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 21
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 214704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.more » « less
- 
            Abstract Atomically thin, two-dimensional, transition-metal dichalcogenide (TMD) monolayers have recently emerged as a versatile platform for optoelectronics. Their appeal stems from a tunable direct bandgap in the visible and near-infrared regions, the ability to enable strong coupling to light, and the unique opportunity to address the valley degree of freedom over atomically thin layers. Additionally, monolayer TMDs can host defect-bound localized excitons that behave as single-photon emitters, opening exciting avenues for highly integrated 2D quantum photonic circuitry. By introducing plasmonic nanostructures and metasurfaces, one may effectively enhance light harvesting, direct valley-polarized emission, and route valley index. This review article focuses on these critical aspects to develop integrated photonic and valleytronic applications by exploiting exciton–plasmon coupling over a new hybrid material platform.more » « less
- 
            Abstract The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light–matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2, the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near‐intrinsic linewidth can be observed at RT when monolayer WS2is coupled with a moderate‐refractive‐index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2through the nanosphere‐supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD‐based nanophotonics and optoelectronics.more » « less
- 
            Abstract The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi 2 Te 4 . Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise ‘forbidden’ by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi 2 Te 4 , the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    