skip to main content


Search for: All records

Award ID contains: 2017554

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The timing of avian migration has evolved to exploit critical seasonal resources, yet plasticity within phenological responses may allow adjustments to interannual resource phenology. The diversity of migratory species and changes in underlying resources in response to climate change make it challenging to generalize these relationships.

    We use bird banding records during spring and fall migration from across North America to examine macroscale phenological responses to interannual fluctuations in temperature and long‐term annual trends in phenology.

    In total, we examine 19 species of North American wood warblers (family Parulidae), summarizing migration timing from 2,826,588 banded birds from 1961 to 2018 across 46 sites during spring and 124 sites during fall.

    During spring, warmer spring temperatures at banding locations translated to earlier median passage dates for 16 of 19 species, with an average 0.65‐day advancement in median passage for every 1°C increase in temperature, ranging from 0.25 to 1.26 days °C−1. During the fall, relationships were considerably weaker, with only 3 of 19 species showing a relationship with temperature. In those three cases, later departure dates were associated with warmer fall periods. Projecting these trends forward under climate scenarios of temperature change, we forecast continued spring advancements under shared socioeconomic pathways from 2041 to 2060 and 2081 to 2100 and more muted and variable shifts for fall.

    These results demonstrate the capacity of long‐distance migrants to respond to interannual fluctuations in temperatures, at least during the spring, and showcase the potential of North American bird banding data understanding phenological trends across a wide diversity of avian species.

     
    more » « less
  2. Abstract

    In this study, we combined a machine learning pipeline and human supervision to identify and label swallow and martin roost locations on data captured from 2000 to 2020 by 12 Weather Surveillance Radars in the Great Lakes region of the US. We employed radar theory to extract the number of birds in each roost detected by our technique. With these data, we set out to investigate whether roosts formed consistently in the same geographic area over two decades and whether consistency was also predictive of roost size. We used a clustering algorithm to group individual roost locations into 104 high‐density regions and extracted the number of years when each of these regions was used by birds to roost. In addition, we calculated the overall population size and analyzed the daily roost size distributions. Our results support the hypothesis that more persistent roosts are also gathering more birds, but we found that on average, most individuals congregate in roosts of smaller size. Given the concentrations and consistency of roosting of swallows and martins in specific areas throughout the Great Lakes, future changes in these patterns should be monitored because they may have important ecosystem and conservation implications.

     
    more » « less
  3. null (Ed.)
    Monitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations—emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska. We use over 400 000 NEXRAD radar scans from seven stations across the state between 1995 and 2018 (86% of samples derived from 2013 to 2018) to measure spring and autumn migration intensity, phenology and directionality. A large bow-shaped terrestrial migratory system spanning the southern two-thirds of the state was identified, with birds generally moving along a northwest–southeast diagonal axis east of the 150th meridian, and along a northeast–southwest axis west of this meridian. Spring peak migration ranged from 3 May to 30 May and between, 18 August and 12 September during the autumn, with timing across stations predicted by longitude, rather than latitude. Across all stations, the intensity of migration was greatest during the autumn as compared to spring, highlighting the opportunity to measure seasonal indices of net breeding productivity for this important system as additional years of radar measurements are amassed. 
    more » « less
  4. null (Ed.)