Abstract The exodus of flying animals from their roosting locations is often visible as expanding ring‐shaped patterns in weather radar data. The NEXRAD network, for example, archives more than 25 years of data across 143 contiguous US radar stations, providing opportunities to study roosting locations and times and the ecosystems of birds and bats. However, access to this information is limited by the cost of manually annotating millions of radar scans. We develop and deploy an AI‐assisted system to annotate roosts in radar data. We build datasets with roost annotations to support the training and evaluation of automated detection models. Roosts are detected, tracked, and incorporated into our developed web‐based interface for human screening to produce research‐grade annotations. We deploy the system to collect swallow and martin roost information from 12 radar stations around the Great Lakes spanning 21 years. After verifying the practical value of the system, we propose to improve the detector by incorporating both spatial and temporal channels from volumetric radar scans. The deployment on Great Lakes radar scans allows accelerated annotation of 15 628 roost signatures in 612 786 radar scans with 183.6 human screening hours, or 1.08 s per radar scan. We estimate that the deployed system reduces human annotation time by ~7×. The temporal detector model improves the average precision at intersection‐over‐union threshold 0.5 (APIoU = .50) by 8% over the previous model (48%→56%), further reducing human screening time by 2.3× in its pilot deployment. These data contain critical information about phenology and population trends of swallows and martins, aerial insectivore species experiencing acute declines, and have enabled novel research. We present error analyses, lay the groundwork for continent‐scale historical investigation about these species, and provide a starting point for automating the detection of other family‐specific phenomena in radar data, such as bat roosts and mayfly hatches.
more »
« less
Long‐term analysis of persistence and size of swallow and martin roosts in the US Great Lakes
Abstract In this study, we combined a machine learning pipeline and human supervision to identify and label swallow and martin roost locations on data captured from 2000 to 2020 by 12 Weather Surveillance Radars in the Great Lakes region of the US. We employed radar theory to extract the number of birds in each roost detected by our technique. With these data, we set out to investigate whether roosts formed consistently in the same geographic area over two decades and whether consistency was also predictive of roost size. We used a clustering algorithm to group individual roost locations into 104 high‐density regions and extracted the number of years when each of these regions was used by birds to roost. In addition, we calculated the overall population size and analyzed the daily roost size distributions. Our results support the hypothesis that more persistent roosts are also gathering more birds, but we found that on average, most individuals congregate in roosts of smaller size. Given the concentrations and consistency of roosting of swallows and martins in specific areas throughout the Great Lakes, future changes in these patterns should be monitored because they may have important ecosystem and conservation implications.
more »
« less
- PAR ID:
- 10418976
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Remote Sensing in Ecology and Conservation
- ISSN:
- 2056-3485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Predicting the spatial occurrence of wildlife is a major challenge for ecology and management. In Latin America, limited knowledge of the number and locations of vampire bat roosts precludes informed allocation of measures intended to prevent rabies spillover to humans and livestock. We inferred the spatial distribution of vampire bat roosts while accounting for observation effort and environmental effects by fitting a log Gaussian Cox process model to the locations of 563 roosts in three regions of Peru. Our model explained 45% of the variance in the observed roost distribution and identified environmental drivers of roost establishment. When correcting for uneven observation effort, our model estimated a total of 2340 roosts, indicating that undetected roosts (76%) exceed known roosts (24%) by threefold. Predicted hotspots of undetected roosts in rabies-free areas revealed high-risk areas for future viral incursions. Using the predicted roost distribution to inform a spatial model of rabies spillover to livestock identified areas with disproportionate underreporting and indicated a higher rabies burden than previously recognized. We provide a transferrable approach to infer the distribution of a mostly unobserved bat reservoir that can inform strategies to prevent the re-emergence of an important zoonosis.more » « less
-
Abstract Models of host–pathogen interactions help to explain infection dynamics in wildlife populations and to predict and mitigate the risk of zoonotic spillover. Insights from models inherently depend on the way contacts between hosts are modelled, and crucially, how transmission scales with animal density.Bats are important reservoirs of zoonotic disease and are among the most gregarious of all mammals. Their population structures can be highly heterogeneous, underpinned by ecological processes across different scales, complicating assumptions regarding the nature of contacts and transmission. Although models commonly parameterise transmission using metrics of total abundance, whether this is an ecologically representative approximation of host–pathogen interactions is not routinely evaluated.We collected a 13‐month dataset of tree‐roostingPteropusspp. from 2,522 spatially referenced trees across eight roosts to empirically evaluate the relationship between total roost abundance and tree‐level measures of abundance and density—the scale most likely to be relevant for virus transmission. We also evaluate whether roost features at different scales (roost level, subplot level, tree level) are predictive of these local density dynamics.Roost‐level features were not representative of tree‐level abundance (bats per tree) or tree‐level density (bats per m2or m3), with roost‐level models explaining minimal variation in tree‐level measures. Total roost abundance itself was either not a significant predictor (tree‐level 3D density) or only weakly predictive (tree‐level abundance).This indicates that basic measures, such as total abundance of bats in a roost, may not provide adequate approximations for population dynamics at scales relevant for transmission, and that alternative measures are needed to compare transmission potential between roosts. From the best candidate models, the strongest predictor of local population structure was tree density within roosts, where roosts with low tree density had a higher abundance but lower density of bats (more spacing between bats) per tree.Together, these data highlight unpredictable and counterintuitive relationships between total abundance and local density. More nuanced modelling of transmission, spread and spillover from bats likely requires alternative approaches to integrating contact structure in host–pathogen models, rather than simply modifying the transmission function.more » « less
-
The US weather radar archive holds detailed information about biological phenomena in the atmosphere over the last 20 years. Communally roosting birds congregate in large numbers at nighttime roosting locations, and their morning exodus from the roost is often visible as a distinctive pattern in radar images. This paper describes a machine learning system to detect and track roost signatures in weather radar data. A significant challenge is that labels were collected opportunistically from previous research studies and there are systematic differences in labeling style. We contribute a latent-variable model and EM algorithm to learn a detection model together with models of labeling styles for individual annotators. By properly accounting for these variations we learn a significantly more accurate detector. The resulting system detects previously unknown roosting locations and provides comprehensive spatio-temporal data about roosts across the US. This data will provide biologists important information about the poorly understood phenomena of broad-scale habitat use and movements of communally roosting birds during the non-breeding season.more » « less
-
Selection of habitat is a key determinant of reproductive success, and the process of finding and choosing these sites is often influenced by the presence of conspecifics. Many bats frequently switch roosts, and some bats repeatedly find new roosts. To find roosts with conspecifics or group members, bats can use social cues. However, most research on how bats use social cues for roost-finding has focused on acoustic cues. Here, we review and discuss the evidence for bat roost selection using scent cues from guano and urine stains, which are present at most bat roosts. We outline reasons why bats might, or might not, use scent in roost detection and selection, and we review evidence on the possible use of guano and urine in roost-finding from eight studies with 12 bat species (across four families). Overall, the sparse evidence that exists indicates that scent cues from guano and urine are not a strong and consistent lure in the species and situations that were tested. Most studies had unclear results or found no effect. Two of the eight studies found weak experimental evidence for bats using guano or urine to select a roosting site. Even if guano and urine can indicate the presence of bats at a roost, it is possible that the resulting olfactory cues do not contain sufficient social information to be used in roost selection, in contrast to olfactory cues from scent marking. Studies of how bats use sensory cues beyond sound could contribute to a better understanding of bat social behavior and roosting ecology.more » « less