skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2017814

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The mainly deep-submarine Ontong Java Plateau (OJP) is the result of the largest outpouring of lava in the geologic record. Volcanic events of this magnitude can have dramatic environmental impacts due to volatile emissions. We report new S measurements in naturally glassy, olivine-hosted melt inclusions and pillow basalt glasses from the OJP. We combined these data with previous S measurements in OJP glasses to quantify S degassing in a suite of OJP glasses. Comparison with an S degassing model suggests OJP lavas that erupted at depths ~>1500 m did not degas S; OJP lavas that erupted at depths ~<1500 m degassed up to ~40% initial S, but these lavas likely made up a small fraction of OJP lavas. This result suggests that despite its large volume compared to continental large igneous provinces (LIPs), OJP lavas emitted less S, potentially contributing to its muted environmental impact. The OJP may provide a framework for the temporal evolution of S degassing at oceanic LIPs, with early eruptions at great water depths releasing limited to no S, and later eruptions at shallow water depths releasing larger, but still limited amounts of S. This framework may also have implications for continental LIP magmas, which may release significant amounts of CO2 but limited amounts of S during intrusive activity, with magmatic S emissions only becoming important during extrusive phases.

     
    more » « less
  2. Abstract

    The degassing of CO2and S from arc volcanoes is fundamentally important to global climate, eruption forecasting, ore deposits, and the cycling of volatiles through subduction zones. However, all existing thermodynamic/empirical models have difficulties reproducing CO2‐H2O‐S trends observed in melt inclusions and provide widely conflicting results regarding the relationships between pressure and CO2/SO2in the vapor. In this study, we develop an open‐source degassing model, Sulfur_X, to track the evolution of S, CO2, H2O, and redox states in melt and vapor in ascending mafic‐intermediate magma. Sulfur_X describes sulfur degassing by parameterizing experimentally derived sulfur partition coefficients for two equilibria: RxnI. FeS (m) + H2O (v H2S (v) + FeO (m), and RxnII. CaSO4(m)  SO2(v) + O2(v) + CaO (m), based on the sulfur speciation in the melt (m) and co‐existing vapor (v). Sulfur_X is also the first to track the evolution offO2and sulfur and iron redox states accurately in the system using electron balance and equilibrium calculations. Our results show that a typical H2O‐rich (4.5 wt.%) arc magma with high initial S6+/ΣS ratio (>0.5) will degas much more (∼2/3) of its initial sulfur at high pressures (>200 MPa) than H2O‐poor ocean island basalts with low initial S6+/ΣS ratio (<0.1), which will degas very little sulfur until shallow pressures (<50 MPa). The pressure‐S relationship in the melt predicted by Sulfur_X provides new insights into interpreting the CO2/STratio measured in high‐T volcanic gases in the run‐up to the eruption.

     
    more » « less