skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sulfur_X: A Model of Sulfur Degassing During Magma Ascent
Abstract The degassing of CO2and S from arc volcanoes is fundamentally important to global climate, eruption forecasting, ore deposits, and the cycling of volatiles through subduction zones. However, all existing thermodynamic/empirical models have difficulties reproducing CO2‐H2O‐S trends observed in melt inclusions and provide widely conflicting results regarding the relationships between pressure and CO2/SO2in the vapor. In this study, we develop an open‐source degassing model, Sulfur_X, to track the evolution of S, CO2, H2O, and redox states in melt and vapor in ascending mafic‐intermediate magma. Sulfur_X describes sulfur degassing by parameterizing experimentally derived sulfur partition coefficients for two equilibria: RxnI. FeS (m) + H2O (v)  H2S (v) + FeO (m), and RxnII. CaSO4(m)  SO2(v) + O2(v) + CaO (m), based on the sulfur speciation in the melt (m) and co‐existing vapor (v). Sulfur_X is also the first to track the evolution offO2and sulfur and iron redox states accurately in the system using electron balance and equilibrium calculations. Our results show that a typical H2O‐rich (4.5 wt.%) arc magma with high initial S6+/ΣS ratio (>0.5) will degas much more (∼2/3) of its initial sulfur at high pressures (>200 MPa) than H2O‐poor ocean island basalts with low initial S6+/ΣS ratio (<0.1), which will degas very little sulfur until shallow pressures (<50 MPa). The pressure‐S relationship in the melt predicted by Sulfur_X provides new insights into interpreting the CO2/STratio measured in high‐T volcanic gases in the run‐up to the eruption.  more » « less
Award ID(s):
1933773 2017814
PAR ID:
10404965
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
4
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO2outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO2. We thus use the limited range in CO2/Ba (81.3 ± 23) and CO2/Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO2concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature (n = 2,446), these data constrain a range of primary CO2abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 105to 3.0 × 108m3/year) and an integrated global MORB magma flux of 16.5 ± 1.6 km3/year. When combined with CO2/Ba and CO2/Rb‐derived primary magma CO2abundances, the calculated segment‐scale CO2fluxes vary by more than 3 orders of magnitude (3.3 × 107to 4.0 × 1010mol/year) and sum to an integrated global MORB CO2flux of × 1012mol/year. Variations in ridge CO2fluxes have a muted effect on global climate; however, because the vast majority of CO2degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level. 
    more » « less
  2. Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions. 
    more » « less
  3. Abstract New geochronologic and paleomagnetic data from the North American Midcontinent Rift (MCR) reveal the synchronous emplacement of the Beaver River diabase, the anorthosite xenoliths within it, and the Greenstone Flow—one of the largest lava flows on Earth. A U‐Pb zircon date of 1091.83  0.21 Ma (2) from one of the anorthosite xenoliths is consistent with the anorthosite cumulate forming as part of the MCR and provides a maximum age constraint for the Beaver River diabase. Paired with the minimum age constraint of a cross‐cutting Silver Bay intrusion (1091.61  0.14 Ma; 2), these data tightly bracket the age of the Beaver River diabase to be 1091.7  0.2 Ma (95% CI), coeval with the eruption of the Greenstone Flow (1091.59  0.27 Ma; 2)—which is further supported by indistinguishable tilt‐corrected paleomagnetic pole positions. Geochronological, paleomagnetic, mineralogical and geochemical data are consistent with a hypothesis that the Beaver River diabase was the feeder system for the Greenstone Flow. The large areal extent of the intrusives and large estimated volume of the volcanics suggest that they represent a rapid and voluminous ca. 1,092 Ma magmatic pulse near the end of the main stage of MCR magmatism. 
    more » « less
  4. Abstract Traditional MOF e‐CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi‐electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e‐CRR systems, CoPc@NU‐1000 and TPP(Co)@NU‐1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU‐1000 MOF. For CoPc@NU‐1000, the e‐CRR responsive CoI/0potential is close to that of NU‐1000 reduction compared to the TPP(Co)@NU‐1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge‐transport resistance (=59.5 Ω) in CoPC@NU‐1000 led FECO=80 %. In contrast, TPP(Co)@NU‐1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1and=91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation. 
    more » « less
  5. Abstract Following sea‐ice retreat, surface waters of Arctic marginal seas become nutrient‐limited and subsurface chlorophyll maxima (SCM) develop below the pycnocline where nutrients and light conditions are favorable. However, the importance of these “hidden” features for regional productivity is not well constrained. Here, we use a unique combination of high‐resolution biogeochemical and physical observations collected on the Chukchi shelf in 2017 to constrain the fine‐scale structure of nutrients, O2, particles, SCM, and turbulence. We find large O2excess at middepth, identified by positive saturation () maxima of 15%–20% that unambiguously indicate significant production occurring in middepth waters. Themaxima coincided with a complete depletion of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+). Nitracline depths aligned with SCM depths and the lowest extent ofmaxima, suggesting this horizon represents a compensation point for balanced growth and loss. Furthermore, SCM were also associated with turbulence minima and sat just above a high turbidity bottom layer where light attenuation increased significantly. Spatially, the largestmaxima were associated with high nutrient winter‐origin water masses (14.8% ± 2.4%), under a shallower pycnocline associated with seasonal melt while lower values were associated with summer‐origin water masses (7.4% ± 3.9%). Integrated O2excesses of 800–1,200 mmol m−2in regions overlying winter water are consistent with primary production rates that are 12%–40% of previously reported regional primary production. These data implicate short‐term and long‐term control of SCM and associated productivity by stratification, turbulence, light, and seasonal water mass formation, with corresponding potential for climate‐related sensitivities. 
    more » « less