skip to main content


Search for: All records

Award ID contains: 2019239

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many deep generative models, such as variational autoencoders (VAEs) and generative adversarial networks (GANs), learn an immersion mapping from a standard normal distribution in a low-dimensional latent space into a higher-dimensional data space. As such, these mappings are only capable of producing simple data topologies, i.e., those equivalent to an immersion of Euclidean space. In this work, we demonstrate the limitations of such latent space generative models when trained on data distributions with non-trivial topologies. We do this by training these models on synthetic image datasets with known topologies (spheres, torii, etc.). We then show how this results in failures of both data generation as well as data interpolation. Next, we compare this behavior to two classes of deep generative models that in principle allow for more complex data topologies. First, we look at chart autoencoders (CAEs), which construct a smooth data manifold from multiple latent space chart mappings. Second, we explore score-based models, e.g., denoising diffusion probabilistic models, which estimate gradients of the data distribution without resorting to an explicit mapping to a latent space. Our results show that these models do demonstrate improved ability over latent space models in modeling data distributions with complex topologies, however, challenges still remain.

     
    more » « less
    Free, publicly-accessible full text available August 26, 2025
  2. Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interests in developing effective and scalable DNN verification techniques and tools. Recent developments in DNN verification have highlighted the potential of constraint-solving approaches that combine abstraction techniques with SAT solving. Abstraction approaches are effective at precisely encode neuron behavior when it is linear, but they lead to overapproximation and combinatorial scaling when behavior is non-linear. SAT approaches in DNN verification have incorporated standard DPLL techniques, but have overlooked important optimizations found in modern SAT solvers that help them scale on industrial benchmarks. In this paper, we present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior – these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully- connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including 𝛼-𝛽-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  3. Deep neural networks (DNN) are being used in a wide range of applications including safety-critical systems. Several DNN test gen- eration approaches have been proposed to generate fault-revealing test inputs. However, the existing test generation approaches do not systematically cover the input data distribution to test DNNs with diverse inputs, and none of the approaches investigate the re- lationship between rare inputs and faults. We propose cit4dnn, an automated black-box approach to generate DNN test sets that are feature-diverse and that comprise rare inputs. cit4dnn constructs diverse test sets by applying combinatorial interaction testing to the latent space of generative models and formulates constraints over the geometry of the latent space to generate rare and fault-revealing test inputs. Evaluation on a range of datasets and models shows that cit4dnn generated tests are more feature diverse than the state-of-the-art, and can target rare fault-revealing testing inputs more effectively than existing methods. 
    more » « less
    Free, publicly-accessible full text available April 12, 2025
  4. Finkbeiner, Bernd ; Kovacs, Laura (Ed.)
    With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance. 
    more » « less
    Free, publicly-accessible full text available April 6, 2025
  5. Testing deep neural networks (DNNs) has garnered great interest in the recent years due to their use in many applications. Black-box test adequacy measures are useful for guiding the testing process in covering the input domain. However, the absence of input specifications makes it challenging to apply black-box test adequacy measures in DNN testing. The Input Distribution Coverage (IDC) framework addresses this challenge by using a variational autoencoder to learn a low dimensional latent representation of the input distribution, and then using that latent space as a coverage domain for testing. IDC applies combinatorial interaction testing on a partitioning of the latent space to measure test adequacy. Empirical evaluation demonstrates that IDC is cost-effective, capable of detecting feature diversity in test inputs, and more sensitive than prior work to test inputs generated using different DNN test generation methods. The findings demonstrate that IDC overcomes several limitations of white-box DNN coverage approaches by discounting coverage from unrealistic inputs and enabling the calculation of test adequacy metrics that capture the feature diversity present in the input space of DNNs. 
    more » « less
  6. null (Ed.)