Deep generative models have experienced great empirical successes in distribution learning. Many existing experiments have demonstrated that deep generative networks can efficiently generate high-dimensional complex data from a low-dimensional easy-to-sample distribution. However, this phenomenon can not be justified by existing theories. The widely held manifold hypothesis speculates that real-world data sets, such as natural images and signals, exhibit low-dimensional geometric structures. In this paper, we take such low-dimensional data structures into consideration by assuming that data distributions are supported on a low-dimensional manifold. We prove approximation and estimation theories of deep generative networks for estimating distributions on a low-dimensional manifold under the Wasserstein-1 loss. We show that the Wasserstein-1 loss converges to zero at a fast rate depending on the intrinsic dimension instead of the ambient data dimension. Our theory leverages the low-dimensional geometric structures in data sets and justifies the practical power of deep generative models. We require no smoothness assumptions on the data distribution which is desirable in practice.
more »
« less
Implications of data topology for deep generative models
Many deep generative models, such as variational autoencoders (VAEs) and generative adversarial networks (GANs), learn an immersion mapping from a standard normal distribution in a low-dimensional latent space into a higher-dimensional data space. As such, these mappings are only capable of producing simple data topologies, i.e., those equivalent to an immersion of Euclidean space. In this work, we demonstrate the limitations of such latent space generative models when trained on data distributions with non-trivial topologies. We do this by training these models on synthetic image datasets with known topologies (spheres, torii, etc.). We then show how this results in failures of both data generation as well as data interpolation. Next, we compare this behavior to two classes of deep generative models that in principle allow for more complex data topologies. First, we look at chart autoencoders (CAEs), which construct a smooth data manifold from multiple latent space chart mappings. Second, we explore score-based models, e.g., denoising diffusion probabilistic models, which estimate gradients of the data distribution without resorting to an explicit mapping to a latent space. Our results show that these models do demonstrate improved ability over latent space models in modeling data distributions with complex topologies, however, challenges still remain.
more »
« less
- PAR ID:
- 10541971
- Publisher / Repository:
- Frontiers in Computer Science
- Date Published:
- Journal Name:
- Frontiers in Computer Science
- Volume:
- 6
- ISSN:
- 2624-9898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks.more » « less
-
Meila, M.; Zhang, T. (Ed.)In this paper, we propose conjugate energy-based models (CEBMs), a new class of energy-based models that define a joint density over data and latent variables. The joint density of a CEBM decomposes into an intractable distribution over data and a tractable posterior over latent variables. CEBMs have similar use cases as variational autoencoders, in the sense that they learn an unsupervised mapping from data to latent variables. However, these models omit a generator network, which allows them to learn more flexible notions of similarity between data points. Our experiments demonstrate that conjugate EBMs achieve competitive results in terms of image modelling, predictive power of latent space, and out-of-domain detection on a variety of datasets.more » « less
-
Many data analysis and design problems involve reasoning about points in high-dimensional space. A common strategy is to embed points from this high-dimensional space into a low-dimensional one. As we will show in this paper, a critical property of good embeddings is that they preserve isometry — i.e., preserving the geodesic distance between points on the original data manifold within their embedded locations in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models, such as autoencoders and generative models. Moreover, while theoretically appealing, it is not clear to what extent enforcing isometry is really necessary for a given design or analysis task. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on both simple pedagogical examples and for airfoil embeddings using the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary to accurately discover latent space clusters — a common analysis method researchers typically perform on low-dimensional embeddings. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designer intend to use distance-based analysis measures (such as clustering, k-Nearest Neighbors methods, etc.) to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.more » « less
-
A key advance in learning generative models is the use of amortized inference distributions that are jointly trained with the models. We find that existing training objectives for variational autoencoders can lead to inaccurate amortized inference distributions and, in some cases, improving the objective provably degrades the inference quality. In addition, it has been observed that variational autoencoders tend to ignore the latent variables when combined with a decoding distribution that is too flexible. We again identify the cause in existing training criteria and propose a new class of objectives (Info-VAE) that mitigate these problems. We show that our model can significantly improve the quality of the variational posterior and can make effective use of the latent features regardless of the flexibility of the decoding distribution. Through extensive qualitative and quantitative analyses, we demonstrate that our models outperform competing approaches on multiple performance metricsmore » « less
An official website of the United States government

