Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although the fluid inhibitory effects of estradiol are well characterized, a dipsogenic role of the hormone was recently identified. In ovariectomized (OVX) rats, unstimulated water intake, in the absence of food, was increased after estradiol treatment. The goals for these experiments were to further characterize the fluid enhancing effects of estradiol by determining the estrogen receptor subtype mediating the dipsogenic effect, examining saline intake, and testing for a dipsogenic effect of estradiol in male rats. Pharmacological activation of estrogen receptor beta (ERβ) increased water intake, in the absence of food, and was associated with changes in postingestive feedback signals. Surprisingly, activation of ERα reduced water intake even in the absence of food. A follow-up study demonstrated that when food was available, co-activation of ERα and ERβ reduced water intake, but when food was not available water intake was increased. In addition, in OVX rats, estradiol increased saline intake through changes in postingestive and orosensory feedback signals. Finally, although estradiol decreased water intake in male rats with access to food, estradiol had no effect on water intake in the absence of food. These results demonstrate that the dipsogenic effect is mediated by ERβ, the fluid enhancing effects of estradiol generalize to saline, and is limited to females, which implies that a feminized brain is necessary for estradiol to increase water intake. These findings will aid in guiding future studies focused on elucidating the neuronal mechanisms that allow estradiol to both increase and decrease fluid intake.more » « less
-
Salt ingestion by animals and humans has been noted from prehistory. The search for salt is largely driven by a physiological need for sodium. There is a large body of literature on sodium intake in laboratory rats, but the vast majority of this work has used male rats. The limited work conducted in both male and female rats, however, reveals sex differences in sodium intake. Importantly, while humans ingest salt every day, with every meal and with many foods, we do not know how many of these findings from rodent studies can be generalized to men and women. This review provides a synthesis of the literature that examines sex differences in sodium intake and highlights open questions. Sodium serves many important physiological functions and is inextricably linked to the maintenance of body fluid homeostasis. Indeed, from a motivated behavior perspective, the drive to consume sodium has largely been studied in conjunction with the study of thirst. This review will describe the neuroendocrine controls of fluid balance, mechanisms underlying sex differences, sex differences in sodium intake, changes in sodium intake during pregnancy, and the possible neuronal mechanisms underlying these differences in behavior. Having reviewed the mechanisms that can only be studied in animal experiments, we address sex differences in human dietary sodium intake in reproduction, and with age.more » « less
An official website of the United States government
