Although the fluid inhibitory effects of estradiol are well characterized, a dipsogenic role of the hormone was recently identified. In ovariectomized (OVX) rats, unstimulated water intake, in the absence of food, was increased after estradiol treatment. The goals for these experiments were to further characterize the fluid enhancing effects of estradiol by determining the estrogen receptor subtype mediating the dipsogenic effect, examining saline intake, and testing for a dipsogenic effect of estradiol in male rats. Pharmacological activation of estrogen receptor beta (ERβ) increased water intake, in the absence of food, and was associated with changes in postingestive feedback signals. Surprisingly, activation of ERα reduced water intake even in the absence of food. A follow-up study demonstrated that when food was available, co-activation of ERα and ERβ reduced water intake, but when food was not available water intake was increased. In addition, in OVX rats, estradiol increased saline intake through changes in postingestive and orosensory feedback signals. Finally, although estradiol decreased water intake in male rats with access to food, estradiol had no effect on water intake in the absence of food. These results demonstrate that the dipsogenic effect is mediated by ERβ, the fluid enhancing effects of estradiol generalize to saline, and is limited to females, which implies that a feminized brain is necessary for estradiol to increase water intake. These findings will aid in guiding future studies focused on elucidating the neuronal mechanisms that allow estradiol to both increase and decrease fluid intake.
more »
« less
Sex Differences in Salt Appetite: Perspectives from Animal Models and Human Studies
Salt ingestion by animals and humans has been noted from prehistory. The search for salt is largely driven by a physiological need for sodium. There is a large body of literature on sodium intake in laboratory rats, but the vast majority of this work has used male rats. The limited work conducted in both male and female rats, however, reveals sex differences in sodium intake. Importantly, while humans ingest salt every day, with every meal and with many foods, we do not know how many of these findings from rodent studies can be generalized to men and women. This review provides a synthesis of the literature that examines sex differences in sodium intake and highlights open questions. Sodium serves many important physiological functions and is inextricably linked to the maintenance of body fluid homeostasis. Indeed, from a motivated behavior perspective, the drive to consume sodium has largely been studied in conjunction with the study of thirst. This review will describe the neuroendocrine controls of fluid balance, mechanisms underlying sex differences, sex differences in sodium intake, changes in sodium intake during pregnancy, and the possible neuronal mechanisms underlying these differences in behavior. Having reviewed the mechanisms that can only be studied in animal experiments, we address sex differences in human dietary sodium intake in reproduction, and with age.
more »
« less
- Award ID(s):
- 2019346
- PAR ID:
- 10445631
- Date Published:
- Journal Name:
- Nutrients
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2072-6643
- Page Range / eLocation ID:
- 208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Females and males can exhibit striking differences in body size, relative trait size, physiology, and behavior. As a consequence, the sexes can have very different rates of whole-body energy use, or converge on similar rates through different physiological mechanisms. Yet many studies that measure the relationship between metabolic rate and body size only pay attention to a single sex (more often males), or do not distinguish between sexes. We present four reasons why explicit attention to energy-use between the sexes can yield insight into the physiological mechanisms that shape broader patterns of metabolic scaling in nature. First, the sexes often differ considerably in their relative investment in reproduction, which shapes much of life-history and rates of energy use. Second, males and females share a majority of their genome but may experience different selective pressures. Sex-specific energy profiles can reveal how the energetic needs of individuals are met despite the challenge of within-species genetic constraints. Third, sexual selection often pushes growth and behavior to physiological extremes. Exaggerated sexually selected traits are often most prominent in one sex, can comprise up to 50% of body mass, and thus provide opportunities to uncover energetic constraints of trait growth and maintenance. Finally, sex-differences in behavior such as mating-displays, long-distance dispersal, and courtship can lead to drastically different energy allocation among the sexes; the physiology to support this behavior can shape patterns of metabolic scaling. The mechanisms underlying metabolic scaling in females, males, and hermaphroditic animals can provide opportunities to develop testable predictions that enhance our understanding of energetic scaling patterns in nature.more » « less
-
Abstract Often called “the change of life,” menopause affects every part of a woman's body. As the sex hormones decrease, the reproductive organs experience the most remarkable changes, with the vagina becoming thinner, drier, and less elastic. Despite the important implications of these changes in genitourinary conditions, there are only a few experimental studies that focus on quantifying the effect of menopause on the mechanical properties of the vagina. These studies are mostly conducted using uniaxial tests on strips of vaginal tissues isolated from rats, rabbits, and sheep and, in only a few cases, from humans. The purpose of this article is to present a systematic review of experimental protocols, methods, and results that are currently published on how menopause alters the mechanical behavior of the vagina. This review will enable new investigators in the biomechanics field to identify important gaps and frame research questions that inform the design of new treatment options for menopausal symptoms.more » « less
-
null (Ed.)The greater male variability phenomenon predicts that males exhibit larger ranges of variation in cognitive performance compared with females; however, support for this pattern has come exclusively from studies of humans and lacks mechanistic explanation. Furthermore, the vast majority of the literature assessing sex differences in cognition is based on studies of humans and a few other mammals. In order to elucidate the underpinnings of cognitive variation and the potential for fitness consequences, we must investigate sex differences in cognition in non-mammalian systems as well. Here, we assess the performance of male and female food-caching birds on a spatial learning and memory task and a reversal spatial task to address whether there are sex differences in mean cognitive performance or in the range of variation in performance. For both tasks, male and female mean performance was similar across four years of testing; however, males did exhibit a wider range of variation in performance on the reversal spatial task compared with females. The implications for mate choice and sexual selection of cognitive abilities are discussed and future directions are suggested to aid in the understanding of sex-related cognitive variation.more » « less
-
Shift work chronically disrupts circadian rhythms and increases the risk of developing cardiovascular disease. However, the mechanisms linking shift work and cardiovascular disease are largely unknown. The goal of this study was to investigate the effects of chronically shifting the light-dark (LD) cycle, which models the disordered exposure to light that may occur during shift work, on atherosclerosis. Atherosclerosis is the progressive accumulation of lipid-filled lesions within the artery wall and is the leading cause of cardiovascular disease. We studied ApolipoproteinE -deficient ( ApoE −/− ) mice that are a well-established model of atherosclerosis. Male and female ApoE −/− mice were housed in control 12L:12D or chronic LD shift conditions for 12 weeks and fed low-fat diet. In the chronic LD shift condition, the light-dark cycle was advanced by 6 h every week. We found that chronic LD shifts exacerbated atherosclerosis in female, but not male, ApoE −/− mice. In females, chronic LD shifts increased total serum cholesterol concentrations with increased atherogenic VLDL/LDL particles. Chronic LD shifts did not affect food intake, activity, or body weight in male or female ApoE −/− mice. We also examined eating behavior in female ApoE −/− mice since aberrant meal timing has been linked to atherosclerosis. The phases of eating behavior rhythms, like locomotor activity rhythms, gradually shifted to the new LD cycle each week in the chronic LD shift group, but there was no effect of the LD shift on the amplitudes of the eating rhythms. Moreover, the duration of fasting intervals was not different in control 12L:12D compared to chronic LD shift conditions. Together these data demonstrate that female ApoE −/− mice have increased atherosclerosis when exposed to chronic LD shifts due to increased VLDL/LDL cholesterol, independent of changes in energy balance or feeding-fasting cycles.more » « less
An official website of the United States government

