skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2019712

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work explores the relationship between wind speed and time-dependent structural motion response as a means of leveraging the rich information visible in flow–structure interactions for anemometry. We build on recent work by Cardona, Bouman and Dabiri ( Flow , vol. 1 , 2021, E4), which presented an approach using mean structural bending. Here, we present the amplitude of the dynamic structural sway as an alternative signal that can be used when mean bending is small or inconvenient to measure. A force balance relating the instantaneous loading and instantaneous deflection yields a relationship between the incident wind speed and the amplitude of structural sway. This physical model is applied to two field datasets comprising 13 trees of 4 different species exposed to ambient wind conditions. Model generalization to the diverse test structures is achieved through normalization with respect to a reference condition. The model agrees well with experimental measurements of the local wind speed, suggesting that tree sway amplitude can be used as an indirect measurement of mean wind speed, and is applicable to a broad variety of diverse trees. 
    more » « less
  2. This study aims to leverage the relationship between fluid dynamic loading and resulting structural deformation to infer the incident flow speed from measurements of time-dependent structure kinematics. Wind tunnel studies are performed on cantilevered cylinders and trees. Tip deflections of the wind-loaded structures are captured in time series data, and a physical model of the relationship between force and deflection is applied to calculate the instantaneous wind speed normalized with respect to a known reference wind speed. Wind speeds inferred from visual measurements showed consistent agreement with ground truth anemometer measurements for different cylinder and tree configurations. These results suggest an approach for non-intrusive, quantitative flow velocimetry that eliminates the need to directly visualize or instrument the flow itself. 
    more » « less