skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: An Assessment of How Domain Experts Evaluate Machine Learning in Operational Meteorology
Abstract As an increasing number of machine learning (ML) products enter the research-to-operations (R2O) pipeline, researchers have anecdotally noted a perceived hesitancy by operational forecasters to adopt this relatively new technology. One explanation often cited in the literature is that this perceived hesitancy derives from the complex and opaque nature of ML methods. Because modern ML models are trained to solve tasks by optimizing a potentially complex combination of mathematical weights, thresholds, and nonlinear cost functions, it can be difficult to determine how these models reach a solution from their given input. However, it remains unclear to what degree a model’s transparency may influence a forecaster’s decision to use that model or if that impact differs between ML and more traditional (i.e., non-ML) methods. To address this question, a survey was offered to forecaster and researcher participants attending the 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE) with questions about how participants subjectively perceive and compare machine learning products to more traditionally derived products. Results from this study revealed few differences in how participants evaluated machine learning products compared to other types of guidance. However, comparing the responses between operational forecasters, researchers, and academics exposed notable differences in what factors the three groups considered to be most important for determining the operational success of a new forecast product. These results support the need for increased collaboration between the operational and research communities. Significance StatementParticipants of the 2021 Hazardous Weather Testbed Spring Forecasting Experiment were surveyed to assess how machine learning products are perceived and evaluated in operational settings. The results revealed little difference in how machine learning products are evaluated compared to more traditional methods but emphasized the need for explainable product behavior and comprehensive end-user training.  more » « less
Award ID(s):
2019758
PAR ID:
10596324
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Weather and Forecasting
Volume:
40
Issue:
3
ISSN:
0882-8156
Page Range / eLocation ID:
393 to 410
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Artificial intelligence and machine learning (AI/ML) have attracted a great deal of attention from the atmospheric science community. The explosion of attention on AI/ML development carries implications for the operational community, prompting questions about how novel AI/ML advancements will translate from research into operations. However, the field lacks empirical evidence on how National Weather Service (NWS) forecasters, as key intended users, perceive AI/ML and its use in operational forecasting. This study addresses this crucial gap through structured interviews conducted with 29 NWS forecasters from October 2021 through July 2023 in which we explored their perceptions of AI/ML in forecasting. We found that forecasters generally prefer the term “machine learning” over “artificial intelligence” and that labeling a product as being AI/ML did not hurt perceptions of the products and made some forecasters more excited about the product. Forecasters also had a wide range of familiarity with AI/ML, and overall, they were (tentatively) open to the use of AI/ML in forecasting. We also provide examples of specific areas related to AI/ML that forecasters are excited or hopeful about and that they are concerned or worried about. One concern that was raised in several ways was that AI/ML could replace forecasters or remove them from the forecasting process. However, forecasters expressed a widespread and deep commitment to the best possible forecasts and services to uphold the agency mission using whatever tools or products that are available to assist them. Last, we note how forecasters’ perceptions evolved over the course of the study. 
    more » « less
  2. Abstract The benefits of collaboration between the research and operational communities during the research-to-operations (R2O) process have long been documented in the scientific literature. Operational forecasters have a practiced, expert insight into weather analysis and forecasting but typically lack the time and resources for formal research and development. Conversely, many researchers have the resources, theoretical knowledge, and formal experience to solve complex meteorological challenges but lack an understanding of operation procedures, needs, requirements, and authority necessary to effectively bridge the R2O gap. Collaboration then serves as the most viable strategy to further a better understanding and improved prediction of atmospheric processes via ongoing multi-disciplinary knowledge transfer between the research and operational communities. However, existing R2O processes leave room for improvement when it comes to collaboration throughout a new product’s development cycle. This study assesses the subjective importance of collaboration at various stages of product development via a survey presented to participants of the 2021 Hazardous Weather Testbed Spring Forecasting Experiment. This feedback is then applied to create a proposed new R2O workflow that combines components from existing R2O procedures and modern co-production philosophies. 
    more » « less
  3. Abstract We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations. Significance StatementWe provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction. 
    more » « less
  4. Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance. 
    more » « less
  5. This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols. 
    more » « less