Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recurrent neural networks (RNNs) have been successfully applied to a variety of problems involving sequential data, but their optimization is sensitive to parameter initialization, architecture, and optimizer hyperparameters. Considering RNNs as dynamical systems, a natural way to capture stability, i.e., the growth and decay over long iterates, are the Lyapunov Exponents (LEs), which form the Lyapunov spectrum. The LEs have a bearing on stability of RNN training dynamics since forward propagation of information is related to the backward propagation of error gradients. LEs measure the asymptotic rates of expansion and contraction of non-linear system trajectories, and generalize stability analysis to the time-varying attractors structuring the non-autonomous dynamics of data-driven RNNs. As a tool to understand and exploit stability of training dynamics, the Lyapunov spectrum fills an existing gap between prescriptive mathematical approaches of limited scope and computationally-expensive empirical approaches. To leverage this tool, we implement an efficient way to compute LEs for RNNs during training, discuss the aspects specific to standard RNN architectures driven by typical sequential datasets, and show that the Lyapunov spectrum can serve as a robust readout of training stability across hyperparameters. With this exposition-oriented contribution, we hope to draw attention to this under-studied, but theoretically grounded tool for understanding training stability in RNNs.
-
A fundamental problem in science is uncovering the effective number of degrees of freedom in a complex system: its dimensionality. A system’s dimensionality depends on its spatiotemporal scale. Here, we introduce a scale-dependent generalization of a classic enumeration of latent variables, the participation ratio. We demonstrate how the scale-dependent participation ratio identifies the appropriate dimension at local, intermediate, and global scales in several systems such as the Lorenz attractor, hidden Markov models, and switching linear dynamical systems. We show analytically how, at different limiting scales, the scale-dependent participation ratio relates to well-established measures of dimensionality. This measure applied in neural population recordings across multiple brain areas and brain states shows fundamental trends in the dimensionality of neural activity—for example, in behaviorally engaged versus spontaneous states. Our novel method unifies widely used measures of dimensionality and applies broadly to multivariate data across several fields of science.more » « less
-
Dimitriadis, Stavros I (Ed.)
The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, endangering the trust in conclusions. We explored the instability of results by instrumenting a structural connectome estimation pipeline with Monte Carlo Arithmetic to introduce random noise throughout. We evaluated the reliability of the connectomes, the robustness of their features, and the eventual impact on analysis. The stability of results was found to range from perfectly stable (i.e. all digits of data significant) to highly unstable (i.e. 0 − 1 significant digits). This paper highlights the potential of leveraging induced variance in estimates of brain connectivity to reduce the bias in networks without compromising reliability, alongside increasing the robustness and potential upper-bound of their applications in the classification of individual differences. We demonstrate that stability evaluations are necessary for understanding error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical workflows both in brain imaging and other domains of computational sciences, as the techniques used were data and context agnostic and globally relevant. Overall, while the extreme variability in results due to analytical instabilities could severely hamper our understanding of brain organization, it also affords us the opportunity to increase the robustness of findings.