skip to main content


Search for: All records

Award ID contains: 2020044

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. INTRODUCTION Inherent in traditional views of ape origins is the idea that, like living apes, early large-bodied apes lived in tropical forests. In response to constraints related to locomoting in forest canopies, it has been proposed that early apes evolved their quintessential upright torsos and acrobatic climbing and suspensory abilities, enhancing their locomotor versatility, to distribute their weight among small supports and thus reach ripe fruit in the terminal branches. This feeding and locomotor transition from a quadruped with a horizontal torso is thought to have occurred in the Middle Miocene due to an increasingly seasonal climate and feeding competition from evolving monkeys. Although ecological and behavioral comparisons among living apes and monkeys provide evidence for versions of terminal branch forest frugivory hypotheses, corroboration from the early ape fossil record has been lacking, as have detailed reconstructions of the habitats where the first apes evolved. RATIONALE The Early Miocene fossil site of Moroto II in Uganda provides a unique opportunity to test the predictions of terminal branch forest frugivory hypotheses. Moroto II documents the oldest [21 million years ago (Ma)] well-established paleontological record of ape teeth and postcranial bones from a single locality and preserves paleoecological proxies to reconstruct the environment. The following lines of evidence from Moroto II were analyzed: (i) the functional anatomy of femora and a vertebra attributed to the ape Morotopithecus ; (ii) dental traits, including molar shape and isotopic profiles of Morotopithecus enamel; (iii) isotopic dietary paleoecology of associated fossil mammals; (iv) biogeochemical signals from paleosols (ancient soils) that reflect local relative proportions of C 3 (trees and shrubs) and C 4 (tropical grasses and sedges that can endure water stress) vegetation as well as rainfall; and (v) assemblages of phytoliths, microscopic plant-derived silica bodies that reflect past plant communities. RESULTS A short, strong femur biomechanically favorable to vertical climbing and a vertebra indicating a dorsostable lower back confirm that ape fossils from Moroto II shared locomotor traits with living apes. Both Morotopithecus and a smaller ape from the site have elongated molars with well-developed crests for shearing leaves. Carbon isotopic signatures of the enamel of these apes and of other fossil mammals indicate that some mammals consistently fed on water-stressed C 3  plants, and possibly also C 4  vegetation, in a woodland setting. Carbon isotope values of pedogenic carbonates, paleosol organic matter, and plant waxes all point to substantial C 4 grass biomass on the landscape. Analysis of paleosols also indicates subhumid, strongly seasonal rainfall, and phytolith assemblages include forms from both arid-adapted C 4 grasses and forest-indicator plants. CONCLUSION The ancient co-occurrence of dental specializations for leaf eating, rather than ripe fruit consumption, along with ape-like locomotor abilities counters the predictions of the terminal branch forest frugivory hypotheses. The combined paleoecological evidence situates Morotopithecus in a woodland with a broken canopy and substantial grass understory including C 4 species. These findings call for a new paradigm for the evolutionary origins of early apes. We propose that seasonal, wooded environments may have exerted previously unrecognized selective pressures in the evolution of arboreal apes. For example, some apes may have needed to access leaves in the higher canopy in times of low fruit availability and to be adept at ascending and descending from trees that lacked a continuous canopy. Hominoid habitat comparisons. Shown are reconstructions of a traditionally conceived hominoid habitat ( A ) and the 21 Ma Moroto II, Uganda, habitat ( B ). 
    more » « less
  2. Age-calibration of hominin fossils and artifacts in the East African Rift is principally achieved through dating of associated volcanic-sedimentary strata. The dominant dating techniques for sites ≳100 ka are the 40Ar/39Ar radiometric dating method, magnetostratigraphy, and tephrostratigraphy. The 40Ar/39Ar technique relies on the occurrence of volcanic deposits in the target strata, which are often present as a consequence of the interplay of rift formation and volcanic activity. The frequency of datable material may be limited; however, by also applying the relative dating methods of magnetostratigraphy and tephrostratigraphy to these same strata, a chronostrati-graphic framework can be built and applied to fossiliferous strata. This chapter provides examples of the application of these techniques at Olduvai Gorge, Tanzania, and two areas of the East African Rift in Ethiopia. 
    more » « less
  3. Paleoanthropologists have long speculated about the role of environmental change in shaping human evolution in Africa. In recent years, drill cores of late Neogene lacustrine sedimentary rocks have yielded valuable high-resolution records of climatic and ecosystem change. Eastern African Rift sediments (primarily lake beds) provide an extraordinary range of data in close proximity to important fossil hominin and archaeological sites, allowing critical study of hypotheses that connect environmental history and hominin evolution. We review recent drill-core studies spanning the Plio–Pleistocene boundary (an interval of hominin diversification, including the earliest members of our genus Homo and the oldest stone tools), and the Mid–Upper Pleistocene (spanning the origin of Homo sapiens in Africa and our early technological and dispersal history). Proposed drilling of Africa's oldest lakes promises to extend such records back to the late Miocene. ▪ High-resolution paleoenvironmental records are critical for understanding external drivers of human evolution. ▪ African lake basin drill cores play a critical role in enhancing hominin paleoenvironmental records given their continuity and proximity to key paleoanthropological sites. ▪ The oldest African lakes have the potential to reveal a comprehensive paleoenvironmental context for the entire late Neogene history of hominin evolution. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models. 
    more » « less