Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summerfield, Christopher (Ed.)When observing the outcome of a choice, people are sensitive to the choice’s context, such that the experienced value of an option depends on the alternatives: getting $1 when the possibilities were 0 or 1 feels much better than when the possibilities were 1 or 10. Context-sensitive valuation has been documented within reinforcement learning (RL) tasks, in which values are learned from experience through trial and error. Range adaptation, wherein options are rescaled according to the range of values yielded by available options, has been proposed to account for this phenomenon. However, we propose that other mechanisms—reflecting a different theoretical viewpoint—may also explain this phenomenon. Specifically, we theorize that internally defined goals play a crucial role in shaping the subjective value attributed to any given option. Motivated by this theory, we develop a new “intrinsically enhanced” RL model, which combines extrinsically provided rewards with internally generated signals of goal achievement as a teaching signal. Across 7 different studies (including previously published data sets as well as a novel, preregistered experiment with replication and control studies), we show that the intrinsically enhanced model can explain context-sensitive valuation as well as, or better than, range adaptation. Our findings indicate a more prominent role of intrinsic, goal-dependent rewards than previously recognized within formal models of human RL. By integrating internally generated signals of reward, standard RL theories should better account for human behavior, including context-sensitive valuation and beyond.more » « less
-
Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future behavioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift between the two systems strategically to maximize immediate learning versus retention of information and found that induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during learning but impairs retention. SIGNIFICANCE STATEMENT Successful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL model was productive in improving our understanding of the interplay between the two systems during learning, demonstrating that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learning, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention. Notably, we show that this cooperative interplay remains largely unaffected by acute stress.more » « less
-
The ability to use past experience to effectively guide decision-making declines in older adulthood. Such declines have been theorized to emerge from either impairments of striatal reinforcement learning systems (RL) or impairments of recurrent networks in prefrontal and parietal cortex that support working memory (WM). Distinguishing between these hypotheses has been challenging because either RL or WM could be used to facilitate successful decision-making in typical laboratory tasks. Here we investigated the neurocomputational correlates of age-related decision-making deficits using an RL-WM task to disentangle these mechanisms, a computational model to quantify them, and magnetic resonance spectroscopy to link them to their molecular bases. Our results reveal that task performance is worse in older age, in a manner best explained by working memory deficits, as might be expected if cortical recurrent networks were unable to sustain persistent activity across multiple trials. Consistent with this, we show that older adults had lower levels of prefrontal glutamate, the excitatory neurotransmitter thought to support persistent activity, compared to younger adults. Individuals with the lowest prefrontal glutamate levels displayed the greatest impairments in working memory after controlling for other anatomical and metabolic factors. Together, our results suggest that lower levels of prefrontal glutamate may contribute to failures of working memory systems and impaired decision-making in older adulthood.more » « less
-
Abstract In reinforcement learning (RL) experiments, participants learn to make rewarding choices in response to different stimuli; RL models use outcomes to estimate stimulus–response values that change incrementally. RL models consider any response type indiscriminately, ranging from more concretely defined motor choices (pressing a key with the index finger), to more general choices that can be executed in a number of ways (selecting dinner at the restaurant). However, does the learning process vary as a function of the choice type? In Experiment 1, we show that it does: Participants were slower and less accurate in learning correct choices of a general format compared with learning more concrete motor actions. Using computational modeling, we show that two mechanisms contribute to this. First, there was evidence of irrelevant credit assignment: The values of motor actions interfered with the values of other choice dimensions, resulting in more incorrect choices when the correct response was not defined by a single motor action; second, information integration for relevant general choices was slower. In Experiment 2, we replicated and further extended the findings from Experiment 1 by showing that slowed learning was attributable to weaker working memory use, rather than slowed RL. In both experiments, we ruled out the explanation that the difference in performance between two condition types was driven by difficulty/different levels of complexity. We conclude that defining a more abstract choice space used by multiple learning systems for credit assignment recruits executive resources, limiting how much such processes then contribute to fast learning.more » « less
-
Abstract Reinforcement learning and working memory are two core processes of human cognition and are often considered cognitively, neuroscientifically, and algorithmically distinct. Here, we show that the brain networks that support them actually overlap significantly and that they are less distinct cognitive processes than often assumed. We review literature demonstrating the benefits of considering each process to explain properties of the other and highlight recent work investigating their more complex interactions. We discuss how future research in both computational and cognitive sciences can benefit from one another, suggesting that a key missing piece for artificial agents to learn to behave with more human-like efficiency is taking working memory's role in learning seriously. This review highlights the risks of neglecting the interplay between different processes when studying human behavior (in particular when considering individual differences). We emphasize the importance of investigating these dynamics to build a comprehensive understanding of human cognition.more » « less
An official website of the United States government

Full Text Available