Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bacteria and ectomycorrhizal fungi (EcMF) represent two of the most dominant plant root-associated microbial groups on Earth, and their interactions continue to gain recognition as significant factors that shape forest health and resilience. Yet, we currently lack a focused review that explains the state of bacteria-EcMF interaction research in the context of experimental approaches and technological advancements. To these ends, we illustrate the utility of studying bacteria-EcMF interactions, detail outstanding questions, outline research priorities in the field, and provide a suite of approaches that can be used to promote experimental reproducibility, field advancement, and collaboration. Though this review centers on the ecology of bacteria, EcMF, and trees, it by default offers experimental and conceptual insights that can be adapted to various subfields of microbiology and microbial ecology.more » « less
-
ABSTRACT Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field‐derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus,Burkholderia, in a time‐dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced ‘Gadgil effect’ by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial‐EcMF interactions.more » « less
-
Gao, Cheng (Ed.)ABSTRACT Most of Earth’s trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth’s land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grewPinus muricataplants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)—one of the most dominant soil microbial groups on Earth—shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.more » « less
An official website of the United States government
