skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2021608

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project with the vision of transforming the traditional topic-focused course structure in environmental engineering into an integrated project-based curriculum (IPBC) that supports a climate of collaborative and continuous learning among faculty and students. The curriculum redesign process engaged faculty in an extensive consensus-building process to define desired student learning outcomes for the program. In the transformed curriculum, faculty collectively agreed to integrate systems thinking, sustainability, and professionalism competencies and to cultivate students’ identity as environmental engineers throughout the degree. To achieve these goals, there must be a level of shared meaning around the four constructs of interest—systems thinking, sustainability, professionalism, environmental engineering—to guide pedagogical decision making among faculty. A qualitative cultural assessment was conducted to investigate, analyze, and describe the shared meanings faculty hold around the four constructs. The goal of the assessment was to uncover areas of shared meaning with the strongest consensus within and across constructs. By eliciting and describing “definitions by consensus,” faculty will be able to generate consistency in teaching and assessment practices throughout the curriculum. The culture assessment process undertaken by the department and its outcomes will be of interest to other programs seeking to foster collaborative teaching and to enhance collective ownership of degree program learning outcomes. 
    more » « less
  2. Many of the National Academy of Engineering’s grand challenges are related to environmental engineering. There is broad recognition that these challenges will require environmental engineers to integrate concepts from the natural and physical sciences, social sciences, business, and communications to find solutions at the individual, company, community, national and global levels. Montana State University is in the process of revolutionizing the curriculum and culture of its environmental engineering program to prepare and inspire a new generation of engineers through a project sponsored by the Revolutionizing Engineering Departments program at the National Science Foundation. At the core of the approach is transformation of the hierarchical, topic-focused course structure into a model of team taught, integrated, and project-based learning courses grouped around the key knowledge threads of systems thinking, professionalism, and sustainability. Multi-disciplinary faculty developed specific and detailed program outcomes after review of ABET program outcomes; the Fundamentals of Engineering exam; Body of Knowledge documents from the American Academy of Environmental Engineers (AAEE), the American Society of Civil Engineers (ASCE) and the American Society for Engineering Management (ASEM); the Engineering for One Planet report sponsored by the Lemelson Foundation; and the KEEN Framework on the Entrepreneurial Mindset. The resulting outcomes were organized into competency strands and competency domains. Currently, outcomes spanning the spectrum of content are being crafted into integrated and project-based courses in each year of the undergraduate curriculum. This paper reviews the lessons learned from the process of developing knowledge threads, competency strands and domains, and specific program outcomes with a multidisciplinary group of faculty, as well as the challenges of developing integrated and project-based courses within an established undergraduate curriculum. 
    more » « less
  3. Engineering education research and accreditation criteria have for some time emphasized that to adequately prepare engineers to meet 21st century challenges, programs need to move toward an approach that integrates professional knowledge, skills, and real-world experiences throughout the curriculum [1], [2], [3]. An integrated approach allows students to draw connections between different disciplinary content, develop professional skills through practice, and relate their emerging engineering competencies to the problems and communities they care about [4], [5]. Despite the known benefits, the challenges to implementing such major programmatic changes are myriad, including faculty’s limited expertise outside their own disciplinary area of specialization and lack of perspective of professional learning outcomes across the curriculum. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project to transform its environmental engineering program by replacing traditional topic-focused courses with a newly developed integrated and project-based curriculum (IPBC). The project engages all tenure-track faculty in the environmental engineering program as well as faculty from five external departments in a collaborative, iterative process to define what students should be expected to know and do at the completion of the undergraduate program. In the process, sustainability, professionalism, and systems thinking arose as foundational pillars of the successful environmental engineer and are proposed as three knowledge threads that can be woven throughout environmental engineering curricula. The paper explores the two-year programmatic redesign process and examines how lessons learned through the process can be applied to course development as the team transitions into the implementation phase of the project. Two new integrated project-based learning courses targeting the 1st- and 2nd-year levels will be taught in academic year 2023-2024. The approach described in this work can be utilized by similar programs as a model for bottom-up curriculum development and integration of non-technical content, which will be necessary for educating engineers of the future. 
    more » « less