skip to main content


Search for: All records

Award ID contains: 2021753

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. TheArabidopsis thaliana plastid ferrochelatasetwo(fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown.

    Here we characterize onefc2suppressor mutation and map it toCYTIDINE TRIPHOSPHATE SYNTHASE TWO(CTPS2), which encodes one of five enzymes in Arabidopsis necessary forde novocytoplasmic CTP (and dCTP) synthesis.

    Thectps2mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggestingctps2blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling.

    Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.

     
    more » « less
  2. Abstract

    After transcription, a messenger RNA (mRNA) is further post‐transcriptionally regulated by several features including RNA secondary structure and covalent RNA modifications (specifically N6‐methyladenosine, m6A). Both RNA secondary structure and m6A have been demonstrated to regulate mRNA stability and translation and have been independently linked to plant responses to soil salinity levels. However, the effect of m6A on regulating RNA secondary structure and the combinatorial interplay between these two RNA features during salt stress response has yet to be studied. Here, we globally identify RNA‐protein interactions and RNA secondary structure during systemic salt stress. This analysis reveals that RNA secondary structure changes significantly during salt stress, and that it is independent of global changes in RNA‐protein interactions. Conversely, we find that m6A is anti‐correlated with RNA secondary structure in a condition‐dependent manner, with salt‐specific m6A correlated with a decrease in mRNA secondary structure during salt stress. Taken together, we suggest that salt‐specific m6A deposition and the associated loss of RNA secondary structure results in increases in mRNA stability for transcripts encoding abiotic stress response proteins and ultimately increases in protein levels from these stabilized transcripts. In total, our comprehensive analyses reveal important post‐transcriptional regulatory mechanisms involved in plant long‐term salt stress response and adaptation.

     
    more » « less
  3. null (Ed.)
    Abstract The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats. 
    more » « less
  4. Abstract Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, while linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression, while only a small proportion of native alleles were retained. 
    more » « less