This publication provides files for the finite element simulation of the mechanical behavior of a set of topologically interlocked material (TIM) systems. Files are to be executed with the FE code ABAQUS (TM), Simulia Inc., or need a file translator to be used by other codes if needed. Files are provided for even (i=10) and odd (i=11) numbered square assemblies of (i x i) blocks confined by a rigid frame and subjected to a transverse displacement load at the assembly center. The following files are provided: The simulations are executed as explicit dynamic simulations with a mass-scale approach to extract the quasi-static response. Building blocks are linear elastic and interact with neighbors by contact and friction. The following files are provided BR_tet_i6.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 6 x 6 blocks. This is the reference model 1. BR_tet_i8.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 8 x 8 blocks. This is the reference model 1. BR_tet_i10.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 10 x 10 blocks. This is the reference model 1. BR_tet_i12.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 12 x 12 blocks. This is the reference model 1. BR_tet_i5.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 5 x 5 blocks. This is the reference model 2. BR_tet_i7.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 7 x 7 blocks. This is the reference model 2. BR_tet_i9.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 9 x 9 blocks. This is the reference model 2. BR_tet_i11.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 11 x 11 blocks. This is the reference model 2. BT1_tet_i6.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT1_tet_i8.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT1_tet_i10.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT1_tet_i12.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT1_tet_i5.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT1_tet_i7.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT1_tet_i9.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT1_tet_i11.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT2_tet_i6.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT2_tet_i8.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT2_tet_i10.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT2_tet_i12.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT2_tet_i5.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT1_tet_i6_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT1_tet_i8_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT1_tet_i10_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT1_tet_i12_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT1_tet_i5_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 5 x 5 blocks. BT1_tet_i7_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 7 x 7 blocks. BT1_tet_i9_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 9 x 9 blocks. BT1_tet_i11_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 11 x 11 blocks. BT2_tet_i6_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT2_tet_i8_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT2_tet_i10_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT2_tet_i12_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT2_tet_i5_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks.
more »
« less
Draft Genome Sequence of an Aspergillus Strain Isolated from a Honey Bee Pupa
ABSTRACT Insect-associated fungi play an important role in wild and agricultural communities. We present a draft genome sequence of an entomopathogenic strain from the fungal genus Aspergillus , isolated from a honey bee pupa.
more »
« less
- PAR ID:
- 10412894
- Editor(s):
- Stajich, Jason E.
- Date Published:
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 11
- Issue:
- 11
- ISSN:
- 2576-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The genome of an individual from an admixed population consists of segments originated from different ancestral populations. Most existing ancestry inference approaches focus on calling these segments for the extant individual. In this paper, we present a general ancestry inference approach for inferring recent ancestors from an extant genome. Given the genome of an individual from a recently admixed population, our method can estimate the proportions of the genomes of the recent ancestors of this individual that originated from some ancestral populations. The key step of our method is the inference of ancestors (called founders) right after the formation of an admixed population. The inferred founders can then be used to infer the ancestry of recent ancestors of an extant individual. Our method is implemented in a computer program called PedMix2. To the best of our knowledge, there is no existing method that can practically infer ancestors beyond grandparents from an extant individual’s genome. Results on both simulated and real data show that PedMix2 performs well in ancestry inference.more » « less
-
The subtle human values we acquire through life experiences govern our thoughts and gets reflected in our speech. It plays an integral part in capturing the essence of our individuality and making it imperative to identify such values in computational systems that mimic human actions. Computational argumentation is a field that deals with the argumentation capabilities of humans and can benefit from identifying such values. Motivated by that, we present an ensemble approach for detecting human values from argument text. Our ensemble comprises three models: (i) An entailment-based model for determining the human values based on their descriptions, (ii) A Roberta-based classifier that predicts the set of human values from an argument. (iii) A Roberta-based classifier to predict a reduced set of human values from an argument. We experiment with different ways of combining the models and report our results. Furthermore, our best combination achieves an overall F1 score of 0.48 on the main test set.more » « less
-
null (Ed.)Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment’s initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle’s kinematic model and incorporating actual ocean model prediction data.more » « less
-
Abstract The Milky Way Bulge extra-tidal star survey is a spectroscopic survey with the goal of identifying stripped globular cluster stars from inner Galaxy clusters. In this way, an indication of the fraction of metal-poor bulge stars that originated from globular clusters can be determined. We observed and analyzed stars in and around BH 261, an understudied globular cluster in the bulge. From seven giants within the tidal radius of the cluster, we measured an average heliocentric radial velocity of 〈RV〉 = −61 ± 2.6 km s−1with a radial velocity dispersion of 〈σ〉 = 6.1 ± 1.9 km s−1. The large velocity dispersion may have arisen from tidal heating in the cluster’s orbit about the Galactic center, or because BH 261 has a high dynamical mass as well as a high mass-to-light ratio. From spectra of five giants, we measure an average metallicity of 〈[Fe/H]〉 = −1.1 ± 0.2 dex. We also spectroscopically confirm an RR Lyrae star in BH 261, which yields a distance to the cluster of 7.1 ± 0.4 kpc. Stars with 3D velocities and metallicities consistent with BH 261 reaching to ∼0.°5 from the cluster are identified. A handful of these stars are also consistent with the spatial distribution of potential debris from models focusing on the most recent disruption of the cluster.more » « less
An official website of the United States government

