skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2022168

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oxaliplatin, a platinum compound in broad clinical use, can induce cell death through a nucleolar stress pathway rather than the canonical DNA damage response studied for other Pt(II) compounds. Previous work has found that the oxaliplatin 1,2‐diaminocyclohexane (DACH) ring but not the oxalate leaving group is important to the ability to induce nucleolar stress. Here we study the influence of DACH ring substituents at the 4‐position on the ability of DACH−Pt(II) compounds to cause nucleolar stress. We determine that DACH−Pt(II) compounds with 4‐position methyl, ethyl, or propyl substituents induce nucleolar stress, but DACH−Pt(II) compounds with 4‐isopropyl substituents do not induce nucleolar stress. This effect is independent of whether the substituent is in the axial or equatorial position relative to thetransdiamines of the ligand. These results suggest that spatially sensitive interactions could be involved in the ability of platinum compounds to cause nucleolar stress. 
    more » « less
  2. Abstract Cyclophanes are a fundamentally interesting class of compounds that host a wide range of unique and emergent properties. However, synthesis of complex and/or functionalized cyclophanes can often suffer from harsh reaction conditions, long reaction times, and sometimes low yields using stepwise methods. We have previously reported an efficient, high‐yielding, metalloid‐directed self‐assembly method to prepare disulfide, thioether, and hydrocarbon cyclophanes and cages that feature mercaptomethyl‐arenes as starting materials. Herein, we report the synthesis of 21 new disulfide and thioether assemblies that expand this high yielding self‐assembly method to a wide breadth of macrocycles and cages with diverse structures. Remarkably, the high‐yielding, efficient syntheses still proceed under dynamic covalent control using electron‐deficient, heteroaryl, cycloalkyl, spiro, and even short alkenyl/alkynyl substrates. 
    more » « less
  3. Pt(II) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(II) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(II)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(II) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a clickcapable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and gH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide–alkyne cycloaddition and may help to better understand Pt(II)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(II) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress. 
    more » « less
  4. Mechanistic differences in S/Se chemistry enable direct H2Se release from selenocarbamates. 
    more » « less
  5. The [ Ph B( t BuIm) 3 ] 1− ligand has gained increased attention since it was first reported in 2006 due to its ability to stabilize highly reactive first row transition metal complexes. In this work, we investigate the coordination chemistry of this ligand with redox-inert zinc to understand how a zinc metal center behaves in such a strong coordinating environment. The Ph B( t BuIm) 3 ZnCl (1) complex can be formed via deprotonation of [ Ph B( t BuIm) 3 ][OTf] 2 followed by the addition of ZnCl 2 . Salt metathesis reaction with nucleophilic n -BuLi yields the highly carbon-rich zinc coordination complex Ph B( t BuIm) 3 ZnBu (2) with three carbene atom donors and one carbanion donor. In contrast, reaction of complex 1 with a less nucleophilic polysulfide reagent, [K.18-C-6] 2 [S 4 ], leads to the formation of a tetrahedral zinc tetrasulfido complex via protonation of one carbene donor to form Ph B( t BuIm) 2 ( t BuImH)Zn(κ 2 -S 4 ) (3). 
    more » « less