skip to main content


This content will become publicly available on October 4, 2024

Title: Comparison of click-capable oxaliplatin and cisplatin derivatives to better understand Pt(II)-induced nucleolar stress
Pt(II) chemotherapeutic complexes have been used as predominant anticancer drugs for nearly fifty years. Currently there are three FDA-approved chemotherapeutic Pt(II) complexes: cisplatin, carboplatin, and oxaliplatin. Until recently, it was believed that all three complexes induced cellular apoptosis through the DNA damage response pathway. Studies within the last decade, however, suggest that oxaliplatin may instead induce cell death through a unique nucleolar stress pathway. Pt(II)-induced nucleolar stress is not well understood and further investigation of this pathway may provide both basic knowledge about nucleolar stress as well as insight for more tunable Pt(II) chemotherapeutics. Through a previous structure-function analysis, it was determined that nucleolar stress induction is highly sensitive to modifications at the 4-position of the 1,2-diaminocyclohexane (DACH) ring of oxaliplatin. Specifically, more flexible and less rigid substituents (methyl, ethyl, propyl) induce nucleolar stress, while more rigid and bulkier substituents (isopropyl, acetamide) do not. These findings suggest that a clickcapable functional group can be installed at the 4-position of the DACH ring while still inducing nucleolar stress. Herein, we report novel click-capable azide-modified oxaliplatin mimics that cause nucleolar stress. Through NPM1 relocalization, fibrillarin redistribution, and gH2AX studies, key differences have been identified between previously studied click-capable cisplatin mimics and these novel click-capable oxaliplatin mimics. These complexes provide new tools to identify cellular targets and localization through post-treatment Cu-catalyzed azide–alkyne cycloaddition and may help to better understand Pt(II)-induced nucleolar stress. To our knowledge, these are the first reported oxaliplatin mimics to include an azide handle, and cis-[(1R,2R,4S) 4-methylazido-1,2-cyclohexanediamine]dichlorido platinum(II) is the first azide-functionalized oxaliplatin derivative to induce nucleolar stress.  more » « less
Award ID(s):
2109255 2022168
NSF-PAR ID:
10473703
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Chemical Biology
Volume:
4
Issue:
10
ISSN:
2633-0679
Page Range / eLocation ID:
785 to 793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oxaliplatin, a platinum compound in broad clinical use, can induce cell death through a nucleolar stress pathway rather than the canonical DNA damage response studied for other Pt(II) compounds. Previous work has found that the oxaliplatin 1,2‐diaminocyclohexane (DACH) ring but not the oxalate leaving group is important to the ability to induce nucleolar stress. Here we study the influence of DACH ring substituents at the 4‐position on the ability of DACH−Pt(II) compounds to cause nucleolar stress. We determine that DACH−Pt(II) compounds with 4‐position methyl, ethyl, or propyl substituents induce nucleolar stress, but DACH−Pt(II) compounds with 4‐isopropyl substituents do not induce nucleolar stress. This effect is independent of whether the substituent is in the axial or equatorial position relative to thetransdiamines of the ligand. These results suggest that spatially sensitive interactions could be involved in the ability of platinum compounds to cause nucleolar stress.

     
    more » « less
  2. null (Ed.)
    Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2. 
    more » « less
  3. null (Ed.)
    Combining strain-promoted azide–alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N 3 , M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N 3 )(PPh 3 )] (Au–N3), [W(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] (W–N3), and [Re(N 3 )(bpy)(CO) 3 ] [bpy = 2,2′-bipyridine] (Re–N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N 3 )(Tp)(PPh 3 ) 2 ] [Tp = tris(pyrazolyl)borate] (Ru–N3), [Pt(N 3 )(CH 3 )(P i Pr 3 ) 2 ] [ i Pr = isopropyl] (Pt(II)–N3), and [Pt(N 3 )(CH 3 ) 3 ] 4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N 3 )(CH 3 ) 3 (P(CH 3 ) 3 ) 2 ] (Pt(IV)–N3) was successfully predicted. 
    more » « less
  4. Since the inception of carbon fiber-reinforced polymers (CFRPs) they have steadily gained in popularity due to their light weight, high tensile strength and modulus, and environmental toughness. However, curing of CFRPs of the thermosetting type generally must be performed within an autoclave, whose fixed, physical dimensions effectively limit the maximum size of the part. Alternative curing chemistries may potentially eliminate the requirement for an autoclave, which would allow creation of much larger panels. This project seeks to develop a thermoset composite matrix that is radiation-curable using the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. Previously, Storey et al.(1,2) reported that the azide-modified epoxy resin, di(3-azido-2-hydroxypropyl) ether of bisphenol-A (DAHP-BPA), could be cured by reaction with polyfunctional alkyne crosslinkers under mild conditions using Cu(I) catalysis. In the absence of reducing agents, Cu(II) compounds are catalytically inactive; however, upon exposure to ultraviolet light, they are reduced to Cu(I), which then catalyzes the reaction, allowing it to progress to a high degree of cure at room temperature. Herein, we report the kinetics of photo-induced CuAAC polymerization of the DAHP-BPA and several polyfunctional propargyl amine based crosslinkers, monitored by real-time FTIR as well as mechanical properties of fully cured materials. Polymerizations were studied as a function of Cu(II) compound type, Cu(II) concentration, UV light (365 nm) intensity, and duration of irradiation. 
    more » « less
  5. null (Ed.)
    Currently, there is a great interest in nanoparticle-based vaccine delivery. Recent studies suggest that nanoparticles when introduced into the biological milieu are not simply passive carriers but may also contribute immunological activity themselves or of their own accord. For example there is considerable interest in the biomedical applications of one of the physiologically-based inorganic metal oxide nanoparticle, zinc oxide (ZnO). Indeed zinc oxide (ZnO) NP are now recognized as a nanoscale chemotherapeutic or anticancer nanoparticle (ANP) and several recent reports suggest ZnO NP and/or its complexes with drug and RNA induce a potent antitumor response in immuno-competent mouse models. A variety of cell culture studies have shown that ZnO NP can induce cytokines such as IFN-γ, TNF-α, IL-2, and IL-12 which are known to regulate the tumor microenvironment. Much less work has been done on magnesium oxide (MgO), cobalt oxide (Co3O4), or nickel oxide (NiO); however, despite the fact that these physiologically-based metal oxide NP are reported to functionally load and assemble RNA and protein onto their surface and may thus also be of potential interest as nanovaccine platform. Here we initially compared in vitro immunogenicity of ZnO and Co3O4 NP and their effects on cancer-associated or tolerogenic cytokines. Based on these data we moved ZnO NP forward to testing in the ex vivo splenocyte assay relative to MgO and NiO NP and these data showed significant difference for flow cytometry sorted population for ZnO-NP, relative to NiO and MgO. These data suggesting both molecular and cellular immunogenic activity, a double-stranded anticancer RNA (ACR), polyinosinic:poly cytidylic acid (poly I:C) known to bind ZnO NP; when ZnO-poly I:C was injected into B16F10-BALB/C tumor significantly induced, IL-2 and IL-12 as shown by Cohen’s d test. LL37 is an anticancer peptide (ACP) currently in clinical trials as an intratumoral immuno-therapeutic agent against metastatic melanoma. LL37 is known to bind poly I:C where it is thought to compete for receptor binding on the surface of some immune cells, metastatic melanoma and lung cells. Molecular dynamic simulations revealed association of LL37 onto ZnO NP confirmed by gel shift assay. Thus using the well-characterized model human lung cancer model cell line (BEAS-2B), poly I:C RNA, LL37 peptide, or LL37-poly I:C complexes were loaded onto ZnO NP and delivered to BEAS-2B lung cells, and the effect on the main cancer regulating cytokine, IL-6 determined by ELISA. Surprisingly ZnO-LL37, but not ZnO-poly I:C or the more novel tricomplex (ZnO-LL37-poly I:C) significantly suppressed IL-6 by >98–99%. These data support the further evaluation of physiological metal oxide compositions, so-called physiometacomposite (PMC) materials and their formulation with anticancer peptide (ACP) and/or anticancer RNA (ACR) as a potential new class of immuno-therapeutic against melanoma and potentially lung carcinoma or other cancers. 
    more » « less